Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2133, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459022

ABSTRACT

Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Diphtheria , Poliovirus , Tetanus , Whooping Cough , Adolescent , Humans , Bordetella pertussis , Immunity, Humoral , Whooping Cough/prevention & control , Diphtheria/prevention & control , Vaccines, Combined , Antibodies, Bacterial , Poliovirus Vaccine, Inactivated , Vaccination , Immunization, Secondary , Corynebacterium , Interferons , Antiviral Agents
2.
J Immunol ; 212(5): 904-916, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38276072

ABSTRACT

A primary concern in vaccine development is safety, particularly avoiding an excessive immune reaction in an otherwise healthy individual. An accurate prediction of vaccine reactogenicity using in vitro assays and computational models would facilitate screening and prioritization of novel candidates early in the vaccine development process. Using the modular in vitro immune construct model of human innate immunity, PBMCs from 40 healthy donors were treated with 10 different vaccines of varying reactogenicity profiles and then cell culture supernatants were analyzed via flow cytometry and a multichemokine/cytokine assay. Differential response profiles of innate activity and cell viability were observed in the system. In parallel, an extensive adverse event (AE) dataset for the vaccines was assembled from clinical trial data. A novel reactogenicity scoring framework accounting for the frequency and severity of local and systemic AEs was applied to the clinical data, and a machine learning approach was employed to predict the incidence of clinical AEs from the in vitro assay data. Biomarker analysis suggested that the relative levels of IL-1B, IL-6, IL-10, and CCL4 have higher predictive importance for AE risk. Predictive models were developed for local reactogenicity, systemic reactogenicity, and specific individual AEs. A forward-validation study was performed with a vaccine not used in model development, Trumenba (meningococcal group B vaccine). The clinically observed Trumenba local and systemic reactogenicity fell on the 26th and 93rd percentiles of the ranges predicted by the respective models. Models predicting specific AEs were less accurate. Our study presents a useful framework for the further development of vaccine reactogenicity predictive models.


Subject(s)
Vaccines , Humans , Immunity, Innate , Incidence , Vaccine Development
3.
Front Immunol ; 12: 689920, 2021.
Article in English | MEDLINE | ID: mdl-34168657

ABSTRACT

An effective malaria vaccine must prevent disease in a range of populations living in regions with vastly different transmission rates and protect against genetically-diverse Plasmodium falciparum (Pf) strains. The protective efficacy afforded by the currently licensed malaria vaccine, Mosquirix™, promotes strong humoral responses to Pf circumsporozoite protein (CSP) 3D7 but protection is limited in duration and by strain variation. Helper CD4 T cells are central to development of protective immune responses, playing roles in B cell activation and maturation processes, cytokine production, and stimulation of effector T cells. Therefore, we took advantage of recent in silico modeling advances to predict and analyze human leukocyte antigen (HLA)-restricted class II epitopes from PfCSP - across the entire PfCSP 3D7 sequence as well as in 539 PfCSP sequence variants - with the goal of improving PfCSP-based malaria vaccines. Specifically, we developed a systematic workflow to identify peptide sequences capable of binding HLA-DR in a context relevant to achieving broad human population coverage utilizing cognate T cell help and with limited T regulatory cell activation triggers. Through this workflow, we identified seven predicted class II epitope clusters in the N- and C-terminal regions of PfCSP 3D7 and an additional eight clusters through comparative analysis of 539 PfCSP sequence variants. A subset of these predicted class II epitope clusters was synthesized as peptides and assessed for HLA-DR binding in vitro. Further, we characterized the functional capacity of these peptides to prime and activate human peripheral blood mononuclear cells (PBMCs), by monitoring cytokine response profiles using MIMIC® technology (Modular IMmune In vitro Construct). Utilizing this decision framework, we found sufficient differential cellular activation and cytokine profiles among HLA-DR-matched PBMC donors to downselect class II epitope clusters for inclusion in a vaccine targeting PfCSP. Importantly, the downselected clusters are not highly conserved across PfCSP variants but rather, they overlap a hypervariable region (TH2R) in the C-terminus of the protein. We recommend assessing these class II epitope clusters within the context of a PfCSP vaccine, employing a test system capable of measuring immunogenicity across a broad set of HLA-DR alleles.


Subject(s)
Antigens, Protozoan/pharmacology , CD4-Positive T-Lymphocytes/drug effects , Drug Design , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/pharmacology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/pharmacology , Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , Cells, Cultured , Computer-Aided Design , Cytokines/metabolism , HLA-DR Antigens/immunology , High-Throughput Screening Assays , Host-Parasite Interactions , Humans , Lymphocyte Activation/drug effects , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Peptide Fragments/immunology , Peptide Fragments/pharmacology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/immunology , Vaccinology , Workflow
4.
Front Immunol ; 12: 684116, 2021.
Article in English | MEDLINE | ID: mdl-34025684

ABSTRACT

Immunization with radiation-attenuated sporozoites (RAS) has been shown to protect against malaria infection, primarily through CD8 T cell responses, but protection is limited based on parasite strain. Therefore, while CD8 T cells are an ideal effector population target for liver stage malaria vaccine development strategies, such strategies must incorporate conserved epitopes that cover a large range of class I human leukocyte antigen (HLA) supertypes to elicit cross-strain immunity across the target population. This approach requires identifying and characterizing a wide range of CD8 T cell epitopes for incorporation into a vaccine such that coverage across a large range of class I HLA alleles is attained. Accordingly, we devised an experimental framework to identify CD8 T cell epitopes from novel and minimally characterized antigens found at the pre-erythrocytic stage of parasite development. Through in silico analysis we selected conserved P. falciparum proteins, using P. vivax orthologues to establish stringent conservation parameters, predicted to have a high number of T cell epitopes across a set of six class I HLA alleles representative of major supertypes. Using the decision framework, five proteins were selected based on the density and number of predicted epitopes. Selected epitopes were synthesized as peptides and evaluated for binding to the class I HLA alleles in vitro to verify in silico binding predictions, and subsequently for stimulation of human T cells using the Modular IMmune In-vitro Construct (MIMIC®) technology to verify immunogenicity. By combining the in silico tools with the ex vivo high throughput MIMIC platform, we identified 15 novel CD8 T cell epitopes capable of stimulating an immune response in alleles across the class I HLA panel. We recommend these epitopes should be evaluated in appropriate in vivo humanized immune system models to determine their protective efficacy for potential inclusion in future vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Liver/parasitology , Plasmodium falciparum/immunology , Alleles , Animals , Computer Simulation , Human Experimentation , Humans , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Plasmodium falciparum/genetics
5.
Cytotechnology ; 70(5): 1325-1335, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29736810

ABSTRACT

Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4+ T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4+ T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4+ T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4+ T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.

6.
J Transl Med ; 15(1): 1, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28049494

ABSTRACT

BACKGROUND: Prophylactic and therapeutic vaccines often depend upon a strong activation of the innate immune system to drive a potent adaptive immune response, often mediated by a strong adjuvant. For a number of adjuvants immunological readouts may not be consistent across species. METHODS: In this study, we evaluated the innate immunostimulatory potential of mRNA vaccines in both humans and mice, using a novel mRNA-based vaccine encoding influenza A hemagglutinin of the pandemic strain H1N1pdm09 as a model. This evaluation was performed using an in vitro model of human innate immunity and in vivo in mice after intradermal injection. RESULTS: Results suggest that immunostimulation from the mRNA vaccine in humans is similar to that in mice and acts through cellular RNA sensors, with genes for RLRs [ddx58 (RIG-1) and ifih1 (MDA-5)], TLRs (tlr3, tlr7, and tlr8-human only), and CLRs (clec4gp1, clec2d, cledl1) all significantly up-regulated by the mRNA vaccine. The up-regulation of TLR8 and TLR7 points to the involvement of both mDCs and pDCs in the response to the mRNA vaccine in humans. In both humans and mice activation of these pathways drove maturation and activation of immune cells as well as production of cytokines and chemokines known to attract and activate key players of the innate and adaptive immune system. CONCLUSION: This translational approach not only allowed for identification of the basic mechanisms of self-adjuvantation from the mRNA vaccine but also for comparison of the response across species, a response that appears relatively conserved or at least convergent between the in vitro human and in vivo mouse models.


Subject(s)
Adjuvants, Immunologic/pharmacology , Genetic Engineering , Immunity, Innate/drug effects , Influenza Vaccines/immunology , RNA, Messenger/administration & dosage , Translational Research, Biomedical , Animals , Base Sequence , Dose-Response Relationship, Immunologic , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Humans , Immunity, Innate/genetics , Lymph Nodes/metabolism , Mice, Inbred C57BL
7.
Article in English | MEDLINE | ID: mdl-26053286

ABSTRACT

Adjuvants have been used in vaccines for over 70 years to promote long-lived and sterilizing immunity. Since then, various adjuvant systems were developed by combining nanotechnology with natural and/or synthetic immunomodulatory molecules. These systems are biocompatible, immunogenic, and possess higher antigen carrying capacity. This article showcases advancements made in the adjuvant systems formulations, their synthesis routes, and the improvement of these adjuvants have brought in response to combat against ongoing global health threats such as malaria, hepatitis C, universal influenza, and human immunodeficiency virus. This review also highlights the interaction of adjuvants with the delivery of antigens to cells and unfolds mechanism of actions. In addition, this review discusses the physicochemical factors responsible for the efficient interaction of nanoadjuvants with antigen receptors to develop more effective, less reactogenic, and multifunctional systems for the next generation vaccines.


Subject(s)
Adjuvants, Immunologic , Vaccines , Animals , Biotechnology , Humans , Mice , Microtechnology , Nanotechnology
8.
PLoS One ; 8(5): e62816, 2013.
Article in English | MEDLINE | ID: mdl-23667525

ABSTRACT

Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (T(H)) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards T(H)1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a T(H)2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1ß pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies.


Subject(s)
Cerium/immunology , Dendritic Cells/immunology , Immunomodulation/physiology , Metal Nanoparticles , T-Lymphocytes, Helper-Inducer/immunology , Titanium/immunology , Analysis of Variance , Catalysis , Cell Proliferation , Cerium/pharmacology , Dendritic Cells/cytology , Flow Cytometry , Fluorescence , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , T-Lymphocytes, Helper-Inducer/cytology , Titanium/pharmacology
9.
Vaccine ; 29(17): 3299-309, 2011 Apr 12.
Article in English | MEDLINE | ID: mdl-21349362

ABSTRACT

The outbreak of the novel swine-origin H1N1 influenza in the spring of 2009 took epidemiologists, immunologists, and vaccinologists by surprise and galvanized a massive worldwide effort to produce millions of vaccine doses to protect against this single virus strain. Of particular concern was the apparent lack of pre-existing antibody capable of eliciting cross-protective immunity against this novel virus, which fueled fears this strain would trigger a particularly far-reaching and lethal pandemic. Given that disease caused by the swine-origin virus was far less severe than expected, we hypothesized cellular immunity to cross-conserved T cell epitopes might have played a significant role in protecting against the pandemic H1N1 in the absence of cross-reactive humoral immunity. In a published study, we used an immunoinformatics approach to predict a number of CD4(+) T cell epitopes are conserved between the 2008-2009 seasonal H1N1 vaccine strain and pandemic H1N1 (A/California/04/2009) hemagglutinin proteins. Here, we provide results from biological studies using PBMCs from human donors not exposed to the pandemic virus to demonstrate that pre-existing CD4(+) T cells can elicit cross-reactive effector responses against the pandemic H1N1 virus. As well, we show our computational tools were 80-90% accurate in predicting CD4(+) T cell epitopes and their HLA-DRB1-dependent response profiles in donors that were chosen at random for HLA haplotype. Combined, these results confirm the power of coupling immunoinformatics to define broadly reactive CD4(+) T cell epitopes with highly sensitive in vitro biological assays to verify these in silico predictions as a means to understand human cellular immunity, including cross-protective responses, and to define CD4(+) T cell epitopes for potential vaccination efforts against future influenza viruses and other pathogens.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Influenza A Virus, H1N1 Subtype/immunology , Adult , Animals , Cells, Cultured , Computational Biology/methods , Cross Protection , Cross Reactions , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Middle Aged
10.
Genomics ; 97(1): 1-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20977933

ABSTRACT

MicroRNAs (miRNAs) are members of a growing family of non-coding transcripts, 21-23 nucleotides long, which regulate a diverse collection of biological processes and various diseases by RNA-mediated gene-silencing mechanisms. While currently many studies focus on defining the regulatory functions of miRNAs, few are directed towards how miRNA genes are themselves transcriptionally regulated. Recent studies of miRNA transcription have elucidated RNA polymerase II as the major polymerase of miRNAs, however, little is known of the structural features of miRNA promoters, especially those of mammalian miRNAs. Here, we review the current literature regarding features conserved among miRNA promoters useful for their detection and the current novel methodologies available to enable researchers to advance our understanding of the transcriptional regulation of miRNA genes.


Subject(s)
Gene Expression Regulation/genetics , MicroRNAs/genetics , Animals , Humans , RNA Polymerase II/metabolism , Transcription, Genetic
11.
Altern Lab Anim ; 37 Suppl 1: 19-27, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19807200

ABSTRACT

While the duration and size of human clinical trials may be difficult to reduce, there are several parameters in pre-clinical vaccine development that may be possible to further optimise. By increasing the accuracy of the models used for pre-clinical vaccine testing, it should be possible to increase the probability that any particular vaccine candidate will be successful in human trials. In addition, an improved model will allow the collection of increasingly more-informative data in pre-clinical tests, thus aiding the rational design and formulation of candidates entered into clinical evaluation. An acceleration and increase in sophistication of pre-clinical vaccine development will thus require the advent of more physiologically-accurate models of the human immune system, coupled with substantial advances in the mechanistic understanding of vaccine efficacy, achieved by using this model. We believe the best viable option available is to use human cells and/or tissues in a functional in vitro model of human physiology. Not only will this more accurately model human diseases, it will also eliminate any ethical, moral and scientific issues involved with use of live humans and animals. An in vitro model, termed "MIMIC" (Modular IMmune In vitro Construct), was designed and developed to reflect the human immune system in a well-based format. The MIMIC System is a laboratory-based methodology that replicates the human immune system response. It is highly automated, and can be used to simulate a clinical trial for a diverse population, without putting human subjects at risk. The MIMIC System uses the circulating immune cells of individual donors to recapitulate each individual human immune response by maintaining the autonomy of the donor. Thus, an in vitro test system has been created that is functionally equivalent to the donor's own immune system and is designed to respond in a similar manner to the in vivo response.


Subject(s)
Animal Testing Alternatives , Endothelium, Vascular/immunology , Leukocytes/immunology , Lymphoid Tissue/immunology , Models, Immunological , Vaccines/immunology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/blood , Antigens, Bacterial/administration & dosage , Antigens, Bacterial/immunology , Clinical Trials as Topic , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Tetanus Toxin/administration & dosage , Tetanus Toxin/immunology
12.
ACS Nano ; 3(9): 2523-32, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19769402

ABSTRACT

Nanoparticle technology is undergoing significant expansion largely because of the potential of nanoparticles as biomaterials, drug delivery vehicles, cancer therapeutics, and immunopotentiators. Incorporation of nanoparticle technologies for in vivo applications increases the urgency to characterize nanomaterial immunogenicity. This study explores titanium dioxide, one of the most widely manufactured nanomaterials, synthesized into its three most common nanoarchitectures: anatase (7-10 nm), rutile (15-20 nm), and nanotube (10-15 nm diameters, 70-150 nm length). The fully human autologous MIMIC immunological construct has been utilized as a predictive, nonanimal alternative to diagnose nanoparticle immunogenicity. Cumulatively, treatment with titanium dioxide nanoparticles in the MIMIC system led to elevated levels of proinflammatory cytokines and increased maturation and expression of costimulatory molecules on dendritic cells. Additionally, these treatments effectively primed activation and proliferation of naive CD4(+) T cells in comparison to dendritic cells treated with micrometer-sized (>1 microm) titanium dioxide, characteristic of an in vivo inflammatory response.


Subject(s)
Dendritic Cells/immunology , Nanoparticles/chemistry , Titanium/chemistry , Titanium/immunology , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cell Survival/drug effects , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Gene Expression Regulation/immunology , Humans , Immunity, Innate/immunology , Inflammation/immunology , Reactive Oxygen Species/metabolism , Titanium/toxicity
13.
Biochim Biophys Acta ; 1783(10): 1737-44, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18541154

ABSTRACT

Androgen receptor plays a critical role in the development and maintenance of cancers in the prostate. Earlier, we have shown that Cdc6, a regulatory protein for initiation of DNA replication, is down regulated in androgen-insensitive prostate cancer cells. In this report, we studied the involvement of androgen, mediated through androgen receptor (AR) in regulation of Cdc6 expression. Our results demonstrated that androgen treatment stimulated Cdc6 expression in xenograft tumors and androgen-sensitive prostate cancer cells. We also showed that androgen treatment stimulated Cdc6 transcription through possible interaction of AR with the ARE sequence in the Cdc6 promoter and that the stimulatory effect of androgen required intact E2F binding sites in the promoter. Androgen treatment differentially altered nuclear availability of E2F1 and E2F3, and increased the amount of hypophosphorylated retinoblastoma protein (pRb) in the nucleus in a time dependent fashion. We further showed that AR interacted with E2F transcription factors in a ligand-independent manner and that ligand-bound AR was less efficient in interacting with E2F proteins. DNA-protein interaction assays indicated that androgen treatment altered binding of E2F1 to the Cdc6 promoter in prostate cancer cells. We conclude that AR regulates Cdc6 transcription through interaction with the Cdc6 promoter, and complex formation with E2F1 and E2F3 in a differential manner.


Subject(s)
Androgens/metabolism , Cell Cycle Proteins/metabolism , E2F Transcription Factors/metabolism , Nuclear Proteins/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Transcription, Genetic/genetics , Binding Sites , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Nucleus/metabolism , Humans , Male , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/genetics , Protein Binding , Up-Regulation
14.
J Immunol Methods ; 335(1-2): 53-64, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18423481

ABSTRACT

Human dendritic cells (DCs) for research and clinical applications are typically derived from purified blood monocytes that are cultured in a cocktail of cytokines for a week or more. Because it has been suggested that these cytokine-derived DCs may be deficient in some important immunological functions and might not accurately represent antigen presenting cell (APC) populations found under normal conditions in vivo, there is an interest in developing methods that permit the derivation of DCs in a more physiologically relevant manner in vitro. Here, we describe a simple and reliable technique for generating large numbers of highly purified DCs that is based on a one-way migration of blood monocytes through a layer of human umbilical vein endothelial cells (HUVECs) that are cultured to confluency in the upper chamber of a Transwell device. The resultant APCs, harvested from the lower Transwell chamber, resemble other cultured DC populations in their expression of major histocompatibility (MHC) and costimulatory molecules, ability to phagocytose protein antigens and capacity to trigger primary antigen-specific T cell responses. This technique offers several advantages over the standard method of in vitro cytokine-driven DC development, including: (1) the rapidity of this approach, as DC differentiation occurs in only 2 days, (2) the differentiation process itself, which is more akin to the development of DCs under physiologic conditions and (3) the cost-effectiveness of the system, since no monocyte pre-selection is required and DC development occurs in the absence of expensive recombinant cytokines.


Subject(s)
Cell Movement , Dendritic Cells/immunology , Endothelial Cells/immunology , Monocytes/immunology , Cell Culture Techniques , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Gap Junctions/immunology , HLA Antigens/metabolism , Humans , Immunologic Memory , Lymphocyte Activation , Membranes, Artificial , Phagocytosis , Phenotype , Polycarboxylate Cement , T-Lymphocytes/immunology , Time Factors
15.
Environ Health Perspect ; 115(3): 346-53, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17431482

ABSTRACT

BACKGROUND: Exposure to arsenic has been associated with development of skin, lung, bladder, liver, and kidney cancer. Recent evidence suggests that an increase in oxidative stress in cells treated with arsenicals represents the molecular mechanism behind arsenic-induced carcinogenesis. Selenium, in the form of selenocysteine, is necessary for the activity of several enzymes with a role in defense against reactive oxygen species. A mutual sparing effect between arsenic and selenium has been shown in animal studies when both metalloids are present in high concentrations. OBJECTIVES: To determine whether changes in selenoprotein synthesis may be an underlying mechanism behind arsenic-induced carcinogenesis, we analyzed the new synthesis of selenoproteins within cells after exposure to inorganic or methylated arsenicals using a human keratinocyte cell model. RESULTS: Addition of arsenite to culture medium blocked new synthesis of selenoproteins when selenium was present in the form of selenite, and appeared to stimulate the use of serum-derived selenium. Monomethylarsonous acid (MMA(III)) treatment of cells, in contrast, did not block all new synthesis of selenoproteins but did result in an increase in cytosolic thioredoxin reductase (TrxR1) at both the mRNA and protein levels. MMA(III) also reduced the new synthesis of cellular glutatione peroxidase (cGpx) and other smaller selenoproteins. Dimethylarsinous acid (DMA(III)) stimulated selenoprotein synthesis by an as yet unknown mechanism. CONCLUSIONS: These results suggest that arsenite and MMA(III) are key metabolites that trigger higher levels of TrxR1, and both lead to a reduction in the expression of cGpx. Together these effects certainly could lead to carcinogenesis given the knowledge that many cancers have higher levels of TrxR, and reduced Gpx levels will reduce the cell's ability to defend against reactive oxygen species. Based on these results, the impact of the trivalent arsenicals arsenite and MMA(III) on selenoprotein synthesis may indeed represent a potential molecular mechanism for the higher rates of cancer observed in populations exposed to high levels of arsenic.


Subject(s)
Arsenicals/pharmacology , Glutathione Peroxidase/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Animals , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Genes, Reporter , Glutathione Peroxidase/genetics , Humans , Keratinocytes , Mice , RNA, Messenger/metabolism , Selenoproteins/metabolism , Thioredoxin Reductase 1 , Thioredoxin-Disulfide Reductase/genetics
16.
Int J Parasitol ; 36(7): 791-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16472811

ABSTRACT

To understand the functional roles of protein kinase A (PKA) during vegetative and differentiating states of Giardia parasites, we studied the structural and functional characteristics of the regulatory subunit of PKA (gPKAr) and its involvement in the giardial encystment process. Molecular cloning and characterisation showed that gPKAr contains two tandem 3'5'-cyclic adenosine monphosphate (cyclic AMP) binding domains at the C-terminal end and the interaction domain for the catalytic subunit. A number of consensus residues including in vivo phosphorylation site for PKAc and dimerisation/docking domain are present in gPKAr. The regulatory subunit physically interacts with the catalytic subunit and inhibits its kinase activity in the absence of cyclic AMP, which could be partially restored upon addition of cyclic AMP. Western blot analysis showed a marked reduction in the endogenous gPKAr concentration during differentiation of Giardia into cysts. An increased activity of gPKAc was also detected during encystation without any significant change in the protein concentration. Distinct localisations of gPKAc to the anterior flagella, basal bodies and caudal flagella as noted in trophozoites were absent in encysting cells at later stages. Instead, PKAc staining was punctate and located mostly to the cell periphery. Our study indicates possible enrichment of the active gPKAc during late stages of encystation, which may have implications in completion of the encystment process or priming of cysts for efficient excystation.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/physiology , Giardia lamblia/enzymology , Amino Acid Sequence , Animals , Blotting, Western/methods , Catalytic Domain/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA, Protozoan/genetics , Gene Expression Regulation, Enzymologic , Gene Library , Giardia lamblia/physiology , Molecular Sequence Data , Polymerase Chain Reaction/methods , Sequence Alignment , Trophozoites/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...