Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 8(6): 3729-38, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26815914

ABSTRACT

Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.

2.
Small ; 10(6): 1163-70, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24343988

ABSTRACT

Lipid coated nanocrystal assemblies are among the most extensively investigated nanoparticle platforms for biomedical imaging and therapeutic purposes. However, very few efforts have been addressed to the lipid coating exchange dynamics in such systems, which is key to our understanding of the nanoparticles' coating stability and their interactions with the environment. Here, we apply the Förster resonance energy transfer (FRET) from quantum dot (QD) core to Cy5.5 dye labeled lipids at the surface to monitor the lipid exchange dynamics in situ and to study its dependence on concentration, temperature and solvent. A kinetic model is developed to describe the experimental data, allowing the rate constants and the activation energy for lipid exchange to be determined. The activation energy for lipid exchange on QD micelles is 155 kJ/mol in saline environment and 130 kJ/mol in pure water. The findings presented here provide basic knowledge on these self-assembled structures and contribute to understanding their performance and to further design of nanomedicine.


Subject(s)
Fluorescence Resonance Energy Transfer , Lipids/chemistry , Micelles , Quantum Dots/chemistry , Carbocyanines , Optical Phenomena , Temperature , Water/chemistry
3.
Nano Lett ; 10(10): 3966-71, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20845975

ABSTRACT

Molecular dynamics simulations are performed on capped and uncapped PbSe nanocrystals, employing newly developed classical interaction potentials. Here, we show that two uncapped nanocrystals fuse efficiently via direct surface attachment, even if they are initially misaligned. In sharp contrast to the general belief, interparticle dipole interactions do not play a significant role in this "oriented attachment" process. Furthermore, it is shown that presumably polar, capped PbSe{111} facets are never fully Pb- or Se-terminated.

4.
J Chem Phys ; 131(12): 124705, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19791910

ABSTRACT

Self-assembly of capped nanocrystals (NC) attracted a lot of attention over the past decade. Despite progress in manufacturing of NC superstructures, the current understanding of their mechanical and thermodynamic stability is still limited. For further applications, it is crucial to find the origin and the magnitude of the interactions that keep self-assembled NCs together, and it is desirable to find a way to rationally manipulate these interactions. We report on molecular simulations of interacting gold NCs protected by capping molecules. We computed the potential of mean force for pairs and triplets of NCs of different size (1.8-3.7 nm) with varying ligand length (ethanethiol-dodecanethiol) in vacuum. Pair interactions are strongly attractive due to attractive van der Waals interactions between ligand molecules. Three-body interaction results in an energy penalty when the capping layers overlap pairwise. This effect contributes up to 20% to the total energy for short ligands. For longer ligands, the three-body effects are so large that formation of NC chains becomes energetically more favorable than close packing of capped NCs at low concentrations, in line with experimental observations. To explain the equilibrium distance for two or more NCs, the overlap cone model is introduced. This model is based on relatively simple ligand packing arguments. In particular, it can correctly explain why the equilibrium distance for a pair of capped NCs is always approximately 1.25 times the core diameter independently on the ligand length, as found in our previous work [Schapotschnikow, R. Pool, and T. J. H. Vlugt, Nano Lett. 8, 2930 (2008)]. We make predictions for which ligands capped NCs self-assemble into highly stable three-dimensional structures, and for which they form high-quality monolayers.


Subject(s)
Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Binding Sites , Computer Simulation , Molecular Conformation , Particle Size , Stress, Mechanical
5.
Nano Lett ; 8(9): 2930-4, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18698832

ABSTRACT

We compute the potential of mean force for two gold nanocrystals capped by alkylthiols from atomistic simulations and show how variables such as temperature, capping molecule length, and the presence of solvent affect these interactions. Our main findings are (1) the equilibrium distance in vacuum always equals approximately 1.25 times the core diameter, (2) incomplete capping layers promote sintering, and (3) the presence of a good solvent results in purely repulsive interactions.

6.
ACS Nano ; 2(8): 1703-14, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19206375

ABSTRACT

The exchange kinetics of native ligands that passivate CdSe quantum dots (hexadecylamine (HDA), trioctylphosphine oxide (TOPO), and trioctylphosphine (TOP)) by thiols is followed in situ. This is realized by measuring, in real-time, the decrease in emission intensity of the QDs upon addition of hexanethiol (HT) which quenches the emission. The effect of adding an excess of native ligands prior to thiol addition on the capping exchange is studied to provide insight in the bond strength and exchange kinetics of the individual surfactants. Temperature-dependent measurements reveal faster kinetics with increasing temperature. A kinetic model to describe the time-dependent measurements is introduced, taking into account the equilibrium between native ligands before thiol addition and describing the evolution of surface coverage by all ligands over time. The model allows us to extract the quenching rate for a single thiol ligand (0.004 ns(-1)) as well as exchange rates, equilibrium constants, activation energies, and changes in Gibbs free energy for replacement of the different native surfactants by HT. The analysis reveals that the substitution half-time of HDA by HT (72 s) is much shorter than for TOP (5 h) or TOPO (2.5 h) under the same conditions. The temperature dependence of the kinetics shows that the activation energy for exchange of HDA/TOPO by hexanethiol (1.6 kJ/mol) is much smaller than for TOP (20.9 kJ/mol).


Subject(s)
Algorithms , Luminescent Measurements/methods , Models, Chemical , Quantum Dots , Spectrometry, Fluorescence/methods , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Computer Simulation , Kinetics , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL