Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847399

ABSTRACT

Monomethylmercury (MMHg) is a neurotoxicant that biomagnifies in marine food webs, reaching high concentrations in apex predators. To predict changes in oceanic MMHg concentrations, it is important to quantify the sources and sinks of MMHg. Here, we study mercury speciation in the California Current System through cruise sampling and modeling. Previous work in the California Current System has found that upwelling transports mercury-enriched deep waters to productive surface waters. These upwelled waters originate within the California Undercurrent water mass and are subsequently advected as a surface water parcel to the California Current. Between the two major water masses, we find that compared to the California Current, the California Undercurrent contains elevated dissolved total mercury (THg) and dimethylmercury (DMHg) concentrations by 59 and 69%, respectively. We explain that these differences result from losses during advection, specifically scavenging of THg and DMHg demethylation. We calculate a net DMHg demethylation rate of 2.0 ± 1.1% d-1 and build an empirically constrained mass budget model to demonstrate that net DMHg demethylation accounts for 61% of surface MMHg sources. These findings illustrate that DMHg is a significant source of MMHg in this region, challenging the current understanding of the major sources of marine MMHg.

3.
Geohealth ; 7(9): e2023GH000858, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37650049

ABSTRACT

Interest in health implications of Earth science research has significantly increased. Articles frequently dispense policy advice, for example, to reduce human contaminant exposures. Recommendations such as fish consumption advisories rarely reflect causal reasoning around tradeoffs or anticipate how scientific information will be received and processed by the media or vulnerable communities. Health is the product of interacting social and physical processes, yet predictable responses are often overlooked. Analysis of physical and social mechanisms, and health and non-health tradeoffs, is needed to achieve policy benefits rather than "policy impact." Dedicated funding mechanisms would improve the quality and availability of these analyses.

4.
Nat Commun ; 14(1): 1372, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914656

ABSTRACT

Marine plastic pollution poses a potential threat to the ecosystem, but the sources and their magnitudes remain largely unclear. Existing bottom-up emission inventories vary among studies for two to three orders of magnitudes (OMs). Here, we adopt a top-down approach that uses observed dataset of sea surface plastic concentrations and an ensemble of ocean transport models to reduce the uncertainty of global plastic discharge. The optimal estimation of plastic emissions in this study varies about 1.5 OMs: 0.70 (0.13-3.8 as a 95% confidence interval) million metric tons yr-1 at the present day. We find that the variability of surface plastic abundance caused by different emission inventories is higher than that caused by model parameters. We suggest that more accurate emission inventories, more data for the abundance in the seawater and other compartments, and more accurate model parameters are required to further reduce the uncertainty of our estimate.

5.
Sci Total Environ ; 836: 155477, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35472347

ABSTRACT

Arctic mercury (Hg) concentrations respond to changes in anthropogenic Hg emissions and environmental change. This manuscript, prepared for the 2021 Arctic Monitoring and Assessment Programme Mercury Assessment, explores the response of Arctic Ocean Hg concentrations to changing primary Hg emissions and to changing sea-ice cover, river inputs, and net primary production. To do this, we conduct a model analysis using a 2015 Hg inventory and future anthropogenic Hg emission scenarios. We model future atmospheric Hg deposition to the surface ocean as a flux to the surface water or sea ice using three scenarios: No Action, New Policy (NP), and Maximum Feasible Reduction (MFR). We then force a five-compartment box model of Hg cycling in the Arctic Ocean with these scenarios and literature-derived climate variables to simulate environmental change. No Action results in a 51% higher Hg deposition rate by 2050 while increasing Hg concentrations in the surface water by 22% and <9% at depth. Both "action" scenarios (NP and MFR), implemented in 2020 or 2035, result in lower Hg deposition ranging from 7% (NP delayed to 2035) to 30% (MFR implemented in 2020) by 2050. Under this last scenario, ocean Hg concentrations decline by 14% in the surface and 4% at depth. We find that the sea-ice cover decline exerts the strongest Hg reducing forcing on the Arctic Ocean while increasing river discharge increases Hg concentrations. When modified together the climate scenarios result in a ≤5% Hg decline by 2050 in the Arctic Ocean. Thus, we show that the magnitude of emissions-induced future changes in the Arctic Ocean is likely to be substantial compared to climate-induced effects. Furthermore, this study underscores the need for prompt and ambitious action for changing Hg concentrations in the Arctic, since delaying less ambitious reduction measures-like NP-until 2035 may become offset by Hg accumulated from pre-2035 emissions.


Subject(s)
Mercury , Arctic Regions , Atmosphere , Environmental Monitoring/methods , Mercury/analysis , Oceans and Seas , Water/analysis
6.
Environ Sci Process Impacts ; 24(9): 1319-1329, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35212334

ABSTRACT

Selenium (Se) has a narrow range between nutritionally optimal and toxic concentrations for many organisms, including fish and humans. However, the degree to which humans are affecting Se concentrations in coastal food webs with diffuse Se sources is not well described. Here we examine large-scale drivers of spatio-temporal variability in Se concentration in herring from the Baltic Sea (coastal sea) to explore the anthropogenic impact on a species from the pelagic food web. We analyze data from three herring muscle time series covering three decades (1979-2010) and herring liver time series from 20 stations across the Baltic Sea covering a fourth decade (2009-2019). We find a 0.7-2.0% per annum (n = 26-30) Se decline in herring muscle samples from 0.34 ± 0.02 µg g-1 ww in 1979-1981 to 0.18 ± 0.03 µg g-1 ww in 2008-2010. This decrease continues in the liver samples during the fourth decade (6 of 20 stations show significant decrease). We also find increasing North-South and East-West gradients in herring Se concentrations. Using our observations, modelled Se deposition (spatio-temporal information) and estimated Se river discharge (spatial information), we show that the spatial variability in herring Se tracks the variability in external source loads. Further, between 1979 and 2010 we report a ∼5% per annum decline in direct Se deposition and a more gradual, 0.7-2.0% per annum, decline in herring Se concentrations. The slower rate of decrease for herring can be explained by stable or only slowly decreasing riverine inputs of Se to the Baltic Sea as well as recycling of Se within the coastal system. Both processes can reduce the effect of the trend predicted from direct Se deposition. We show that changing atmospheric emissions of Se may influence Se concentrations of a pelagic fish species in a coastal area through direct deposition and riverine inputs from the terrestrial landscape.


Subject(s)
Selenium , Water Pollutants, Chemical , Animals , Baltic States , Fishes , Humans , Seafood , Water Pollutants, Chemical/analysis
7.
8.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34751160

ABSTRACT

The COVID-19 pandemic has led to an increased demand for single-use plastics that intensifies pressure on an already out-of-control global plastic waste problem. While it is suspected to be large, the magnitude and fate of this pandemic-associated mismanaged plastic waste are unknown. Here, we use our MITgcm ocean plastic model to quantify the impact of the pandemic on plastic discharge. We show that 8.4 ± 1.4 million tons of pandemic-associated plastic waste have been generated from 193 countries as of August 23, 2021, with 25.9 ± 3.8 thousand tons released into the global ocean representing 1.5 ± 0.2% of the global total riverine plastic discharge. The model projects that the spatial distribution of the discharge changes rapidly in the global ocean within 3 y, with a significant portion of plastic debris landing on the beach and seabed later and a circumpolar plastic accumulation zone will be formed in the Arctic. We find hospital waste represents the bulk of the global discharge (73%), and most of the global discharge is from Asia (72%), which calls for better management of medical waste in developing countries.


Subject(s)
COVID-19/therapy , Oceans and Seas , Plastics , SARS-CoV-2 , Water Pollutants , Developing Countries , Global Health , Humans
9.
Environ Sci Technol ; 55(3): 1487-1496, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33474936

ABSTRACT

Diverse airborne microbes affect human health and biodiversity, and the Sahara region of West Africa is a globally important source region for atmospheric dust. We collected size-fractionated (>10, 10-2.5, 2.5-1.0, 1.0-0.5, and <0.5 µm) atmospheric particles in Mali, West Africa and conducted the first cultivation-independent study of airborne microbes in this region using 16S rRNA gene sequencing. Abundant and diverse microbes were detected in all particle size fractions at levels higher than those previously hypothesized for desert regions. Average daily abundance was 1.94 × 105 16S rRNA copies/m3. Daily patterns in abundance for particles <0.5 µm differed significantly from other size fractions likely because they form mainly in the atmosphere and have limited surface resuspension. Particles >10 µm contained the greatest fraction of daily abundance (51-62%) and had significantly greater diversity than smaller particles. Greater bacterial abundance of particles >2.5 µm that are bigger than the average bacterium suggests that most airborne bacteria are present as aggregates or attached to particles rather than as free-floating cells. Particles >10 µm have very short atmospheric lifetimes and thus tend to have more localized origins. We confirmed the presence of several potential pathogens using polymerase chain reaction that are candidates for viability and strain testing in future studies. These species were detected on all particle sizes tested, including particles <2.5 µm that are expected to undergo long-range transport. Overall, our results suggest that the composition and sources of airborne microbes can be better discriminated by collecting size-fractionated samples.


Subject(s)
Dust , Microbiota , Africa, Northern , Air Microbiology , Dust/analysis , Humans , Mali , Particle Size , RNA, Ribosomal, 16S/genetics
10.
Nature ; 572(7771): 648-650, 2019 08.
Article in English | MEDLINE | ID: mdl-31391584

ABSTRACT

More than three billion people rely on seafood for nutrition. However, fish are the predominant source of human exposure to methylmercury (MeHg), a potent neurotoxic substance. In the United States, 82% of population-wide exposure to MeHg is from the consumption of marine seafood and almost 40% is from fresh and canned tuna alone1. Around 80% of the inorganic mercury (Hg) that is emitted to the atmosphere from natural and human sources is deposited in the ocean2, where some is converted by microorganisms to MeHg. In predatory fish, environmental MeHg concentrations are amplified by a million times or more. Human exposure to MeHg has been associated with long-term neurocognitive deficits in children that persist into adulthood, with global costs to society that exceed US$20 billion3. The first global treaty on reductions in anthropogenic Hg emissions (the Minamata Convention on Mercury) entered into force in 2017. However, effects of ongoing changes in marine ecosystems on bioaccumulation of MeHg in marine predators that are frequently consumed by humans (for example, tuna, cod and swordfish) have not been considered when setting global policy targets. Here we use more than 30 years of data and ecosystem modelling to show that MeHg concentrations in Atlantic cod (Gadus morhua) increased by up to 23% between the 1970s and 2000s as a result of dietary shifts initiated by overfishing. Our model also predicts an estimated 56% increase in tissue MeHg concentrations in Atlantic bluefin tuna (Thunnus thynnus) due to increases in seawater temperature between a low point in 1969 and recent peak levels-which is consistent with 2017 observations. This estimated increase in tissue MeHg exceeds the modelled 22% reduction that was achieved in the late 1990s and 2000s as a result of decreased seawater MeHg concentrations. The recently reported plateau in global anthropogenic Hg emissions4 suggests that ocean warming and fisheries management programmes will be major drivers of future MeHg concentrations in marine predators.


Subject(s)
Aquatic Organisms/metabolism , Climate Change , Environmental Exposure/analysis , Fisheries/supply & distribution , Fishes/metabolism , Food Chain , Methylmercury Compounds/analysis , Predatory Behavior , Animals , Aquatic Organisms/chemistry , Aquatic Organisms/classification , Diet/veterinary , Dogfish/metabolism , Fishes/classification , Food Contamination/analysis , Gadus morhua/metabolism , Humans , Seafood/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis
11.
Environ Sci Technol ; 52(2): 654-662, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29227685

ABSTRACT

Methylmercury (MeHg) concentrations can increase by 100 000 times between seawater and marine phytoplankton, but levels vary across sites. To better understand how ecosystem properties affect variability in planktonic MeHg concentrations, we develop a model for MeHg uptake and trophic transfer at the base of marine food webs. The model successfully reproduces measured concentrations in phytoplankton and zooplankton across diverse sites from the Northwest Atlantic Ocean. Highest MeHg concentrations in phytoplankton are simulated under low dissolved organic carbon (DOC) concentrations and ultraoligotrophic conditions typical of open ocean regions. This occurs because large organic complexes bound to MeHg inhibit cellular uptake and cell surface area to volume ratios are greatest under low productivity conditions. Modeled bioaccumulation factors for phytoplankton (102.4-105.9) are more variable than those for zooplankton (104.6-106.2) across ranges in DOC (40-500 µM) and productivities (ultraoligotrophic to hypereutrophic) typically found in marine ecosystems. Zooplankton growth dilutes their MeHg body burden, but they also consume greater quantities of MeHg enriched prey at larger sizes. These competing processes lead to lower variability in MeHg concentrations in zooplankton compared to phytoplankton. Even under hypereutrophic conditions, modeled growth dilution in marine zooplankton is insufficient to lower their MeHg concentrations, contrasting findings from freshwater ecosystems.


Subject(s)
Methylmercury Compounds , Water Pollutants, Chemical , Animals , Atlantic Ocean , Ecosystem , Food Chain , Plankton
12.
Environ Sci Technol ; 50(23): 13115-13122, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27934282

ABSTRACT

Developing Canadian hydroelectric resources is a key component of North American plans for meeting future energy demands. Microbial production of the bioaccumulative neurotoxin methylmercury (MeHg) is stimulated in newly flooded soils by degradation of labile organic carbon and associated changes in geochemical conditions. We find all 22 Canadian hydroelectric facilities being considered for near-term development are located within 100 km of indigenous communities. For a facility in Labrador, Canada (Muskrat Falls) with planned completion in 2017, we probabilistically modeled peak MeHg enrichment relative to measured baseline conditions in the river to be impounded, downstream estuary, locally harvested fish, birds and seals, and three Inuit communities. Results show a projected 10-fold increase in riverine MeHg levels and a 2.6-fold increase in estuarine surface waters. MeHg concentrations in locally caught species increase 1.3 to 10-fold depending on time spent foraging in different environments. Mean Inuit MeHg exposure is forecasted to double following flooding and over half of the women of childbearing age and young children in the most northern community are projected to exceed the U.S. EPA's reference dose. Equal or greater aqueous MeHg concentrations relative to Muskrat Falls are forecasted for 11 sites across Canada, suggesting the need for mitigation measures prior to flooding.


Subject(s)
Environmental Monitoring , Mercury , Animals , Canada , Humans , Methylmercury Compounds , Rivers , Water Pollutants, Chemical
13.
Environ Sci Technol ; 50(21): 11559-11568, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27690400

ABSTRACT

Methylmercury (MeHg) exposure can cause adverse reproductive and neurodevelopmental health effects. Estuarine fish may be exposed to MeHg produced in rivers and their watersheds, benthic sediment, and the marine water column, but the relative importance of each source is poorly understood. We measured stable isotopes of mercury (δ202Hg, Δ199Hg, and Δ201Hg), carbon (δ13C), and nitrogen (δ15N) in fish with contrasting habitats from a large subarctic coastal ecosystem to better understand MeHg exposure sources. We identify two distinct food chains exposed to predominantly freshwater and marine MeHg sources but do not find evidence for a benthic marine MeHg signature. This is consistent with our previous research showing benthic sediment is a net sink for MeHg in the estuary. Marine fish display lower and less variable Δ199Hg values (0.78‰ to 1.77‰) than freshwater fish (0.72‰ to 3.14‰) and higher δ202Hg values (marine: 0.1‰ to 0.57‰; freshwater: -0.76‰ to 0.15‰). We observe a shift in the Hg isotopic composition of juvenile and adult rainbow smelt (Osmerus mordax) when they transition between the freshwater and marine environment as their dominant foraging territory. The Hg isotopic composition of Atlantic salmon (Salmo salar) indicates they receive most of their MeHg from the marine environment despite a similar or longer duration spent in freshwater regions. We conclude that stable Hg isotopes effectively track fish MeHg exposure sources across different ontogenic stages.


Subject(s)
Mercury Isotopes , Mercury , Adolescent , Animals , Environmental Monitoring , Humans , Methylmercury Compounds , Water Pollutants, Chemical
14.
Environ Sci Technol ; 50(21): 11787-11796, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27704806

ABSTRACT

Eutrophication is expanding worldwide, but its implication for production and bioaccumulation of neurotoxic monomethylmercury (MeHg) is unknown. We developed a mercury (Hg) biogeochemical model for the Baltic Sea and used it to investigate the impact of eutrophication on phytoplankton MeHg concentrations. For model evaluation, we measured total methylated Hg (MeHgT) in the Baltic Sea and found low concentrations (39 ± 16 fM) above the halocline and high concentrations in anoxic waters (1249 ± 369 fM). To close the Baltic Sea MeHgT budget, we inferred an average normoxic water column HgII methylation rate constant of 2 × 10-4 d-1. We used the model to compare Baltic Sea's present-day (2005-2014) eutrophic state to an oligo/mesotrophic scenario. Eutrophication increases primary production and export of organic matter and associated Hg to the sediment effectively removing Hg from the active biogeochemical cycle; this results in a 27% lower present-day water column Hg reservoir. However, increase in organic matter production and remineralization stimulates microbial Hg methylation resulting in a seasonal increase in both water and phytoplankton MeHg reservoirs above the halocline. Previous studies of systems dominated by external MeHg sources or benthic production found eutrophication to decrease MeHg levels in plankton. This Baltic Sea study shows that in systems with MeHg production in the normoxic water column eutrophication can increase phytoplankton MeHg content.


Subject(s)
Phytoplankton , Water Pollutants, Chemical , Environmental Monitoring , Eutrophication , Mercury , Methylmercury Compounds
16.
Proc Natl Acad Sci U S A ; 112(38): 11789-94, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26351688

ABSTRACT

Elevated levels of neurotoxic methylmercury in Arctic food-webs pose health risks for indigenous populations that consume large quantities of marine mammals and fish. Estuaries provide critical hunting and fishing territory for these populations, and, until recently, benthic sediment was thought to be the main methylmercury source for coastal fish. New hydroelectric developments are being proposed in many northern ecosystems, and the ecological impacts of this industry relative to accelerating climate changes are poorly characterized. Here we evaluate the competing impacts of climate-driven changes in northern ecosystems and reservoir flooding on methylmercury production and bioaccumulation through a case study of a stratified sub-Arctic estuarine fjord in Labrador, Canada. Methylmercury bioaccumulation in zooplankton is higher than in midlatitude ecosystems. Direct measurements and modeling show that currently the largest methylmercury source is production in oxic surface seawater. Water-column methylation is highest in stratified surface waters near the river mouth because of the stimulating effects of terrestrial organic matter on methylating microbes. We attribute enhanced biomagnification in plankton to a thin layer of marine snow widely observed in stratified systems that concentrates microbial methylation and multiple trophic levels of zooplankton in a vertically restricted zone. Large freshwater inputs and the extensive Arctic Ocean continental shelf mean these processes are likely widespread and will be enhanced by future increases in water-column stratification, exacerbating high biological methylmercury concentrations. Soil flooding experiments indicate that near-term changes expected from reservoir creation will increase methylmercury inputs to the estuary by 25-200%, overwhelming climate-driven changes over the next decade.


Subject(s)
Aquatic Organisms/chemistry , Biota , Environmental Monitoring , Fresh Water , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Arctic Regions , Climate , Electricity , Estuaries , Lakes/chemistry , Mercury/analysis , Methylation , Plankton/chemistry , Seasons , Seawater/chemistry , Time Factors
17.
Environ Sci Technol ; 49(10): 5965-72, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25877683

ABSTRACT

Methylmercury (MeHg) is the only species of mercury (Hg) to biomagnify in aquatic food-webs to levels that are a widespread concern for human and ecological health. Here we investigate the association between dissolved organic matter (DOM) in seawater and Hg speciation and uptake using experimental data and field measurements from Long Island Sound (LIS) and the Northwestern Atlantic continental margin. We measured differences in DOM composition across sampling stations using excitation emission matrix fluorescence spectroscopy and further separated DOM into terrestrial and marine components using Parallel Factor Analysis (PARAFAC). Highest MeHg concentrations were found in the estuarine stations (LIS) with highest DOM concentrations due to enhanced external inputs from the watershed and rivers. For stations on the shelf and slope, MeHg in plankton increased linearly with a decreasing fraction of fluorescence attributable to DOM components with a terrestrial rather than marine origin. These results are corroborated by experimental data showing higher MeHg uptake by cells in the presence of predominantly marine DOM compared to terrestrial DOM. Highest fractions of dissolved gaseous mercury were also found at stations with the highest marine DOM content, suggesting a greater reducible fraction of divalent inorganic Hg. These data suggest DOM composition is a critical driver of Hg reactivity and bioavailability in offshore marine waters.


Subject(s)
Mercury/analysis , Organic Chemicals/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Bacteria/metabolism , Biological Availability , Factor Analysis, Statistical , Geography , Methylmercury Compounds/analysis , Plankton/metabolism , Solubility , Spectrometry, Fluorescence
18.
Mar Chem ; 177(Pt 5): 721-730, 2015 Dec 20.
Article in English | MEDLINE | ID: mdl-26806999

ABSTRACT

Estuarine water column methylmercury (MeHg) is an important driver of mercury (Hg) bioaccumulation in pelagic organisms and thus it is necessary to understand the sources and processes affecting environmental levels of MeHg. Increases in water column MeHg concentrations can ultimately be transferred to fish consumed by humans, but despite this, the sources of MeHg to the estuarine water column are still poorly understood. Here we evaluate MeHg sources across 4 estuaries and 10 sampling sites and examine the distributions and partitioning of sediment and water column MeHg across a geographic range (Maine to New Jersey). Our study sites present a gradient in the concentrations of sediment, pore water and water column Hg species. Suspended particle MeHg ranged from below detection to 187 pmol g-1, dissolved MeHg from 0.01 to 0.68 pM, and sediment MeHg from 0.01 to 109 pmol g-1. Across multiple estuaries, dissolved MeHg correlated with Hg species in the water column, and sediment MeHg correlated with sediment total Hg (HgT). Water column MeHg did not correlate well with sediment Hg across estuaries, indicating that sediment concentrations were not a good predictor of water MeHg concentrations. This is an unexpected finding since it has been shown that MeHg production from inorganic Hg2+ within sediment is the primary source of MeHg to coastal waters. Additional sources of MeHg regulate water column MeHg levels in some of the shallow estuaries included in this study.

19.
Environ Sci Technol ; 48(2): 954-60, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24344684

ABSTRACT

Mercury (Hg) speciation and the activity of Hg(II)-methylating bacteria are responsible for the rate of methylmercury production and thus bioaccumulation in marine foodwebs. Factors affecting porewater partitioning (Kd) and methylation of Hg(II) were examined at 11 sites in sediment of 4 biogeochemically diverse estuaries in the Northeast U.S. In Long Island Sound, 88% of total mercury (HgT) log Kd variability was described by porewater dissolved organic carbon concentration and sediment total sulfur (S) content. Whereas across all estuaries, regression analyses showed that S alone drives about 70% of Kd variability and 50% of changes in methylation rates; and the inclusion of DOC and sulfides did not improve the prediction. Thus, we demonstrated that S is a better predictor of HgT log Kd than the sediment organic matter across multiple estuaries, and while organic matter and S are interchangeable in small-scale studies, on a larger scale, sediment S content is the simplest and most effective variable to measure.


Subject(s)
Estuaries , Geologic Sediments/chemistry , Methylmercury Compounds/analysis , Sulfur/analysis , Water Pollutants, Chemical/analysis , Bays , Carbon/analysis , Methylation , New England , Porosity
20.
Environ Sci Technol ; 47(2): 695-700, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23194318

ABSTRACT

Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (Hg(II)) species primarily in sediments, then accumulates and biomagnifies in the food web. Most of the fish consumed in the United States are from estuarine and marine systems, highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern U.S. (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across 5 orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas such as Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries.


Subject(s)
Geologic Sediments/chemistry , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Fishes/metabolism , Humans , Humic Substances/analysis , Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...