Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3756, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704381

ABSTRACT

The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.


Subject(s)
Fallopian Tubes , Gonorrhea , Inflammation , Interleukin-17 , Neisseria gonorrhoeae , Adult , Female , Humans , Cytokines/metabolism , Epithelium/pathology , Epithelium/microbiology , Fallopian Tubes/microbiology , Fallopian Tubes/pathology , Fallopian Tubes/immunology , Gonorrhea/immunology , Gonorrhea/microbiology , Gonorrhea/pathology , Inflammation/pathology , Inflammation/microbiology , Interleukin-17/metabolism , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/pathogenicity , Pelvic Inflammatory Disease/microbiology , Pelvic Inflammatory Disease/pathology , Pelvic Inflammatory Disease/immunology , Receptors, Interleukin-17/metabolism , Receptors, Interleukin-17/genetics
2.
Infect Immun ; 92(5): e0000424, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38563734

ABSTRACT

Neisseria gonorrhoeae, a human restricted pathogen, releases inflammatory peptidoglycan (PG) fragments that contribute to the pathophysiology of pelvic inflammatory disease. The genus Neisseria is also home to multiple species of human- or animal-associated Neisseria that form part of the normal microbiota. Here we characterized PG release from the human-associated nonpathogenic species Neisseria lactamica and Neisseria mucosa and animal-associated Neisseria from macaques and wild mice. An N. mucosa strain and an N. lactamica strain were found to release limited amounts of the proinflammatory monomeric PG fragments. However, a single amino acid difference in the PG fragment permease AmpG resulted in increased PG fragment release in a second N. lactamica strain examined. Neisseria isolated from macaques also showed substantial release of PG monomers. The mouse colonizer Neisseria musculi exhibited PG fragment release similar to that seen in N. gonorrhoeae with PG monomers being the predominant fragments released. All the human-associated species were able to stimulate NOD1 and NOD2 responses. N. musculi was a poor inducer of mouse NOD1, but ldcA mutation increased this response. The ability to genetically manipulate N. musculi and examine effects of different PG fragments or differing amounts of PG fragments during mouse colonization will lead to a better understanding of the roles of PG in Neisseria infections. Overall, we found that only some nonpathogenic Neisseria have diminished release of proinflammatory PG fragments, and there are differences even within a species as to types and amounts of PG fragments released.


Subject(s)
Neisseria , Nod1 Signaling Adaptor Protein , Nod2 Signaling Adaptor Protein , Peptidoglycan , Animals , Humans , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins , Neisseria/genetics , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism
3.
J Bacteriol ; 205(12): e0027723, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38038461

ABSTRACT

IMPORTANCE: Neisseria gonorrhoeae is unusual in that the bacteria release larger amounts of cell wall material as they grow as compared to related bacteria, and the released cell wall fragments induce inflammation that leads to tissue damage in infected people. The study of MltG revealed the importance of this enzyme for controlling cell wall growth, cell wall fragment production, and bacterial cell size and suggests a role for MltG in a cell wall synthesis and degradation complex. The increased antibiotic sensitivities of mltG mutants suggest that an antimicrobial drug inhibiting MltG would be useful in combination therapy to restore the sensitivity of the bacteria to cell wall targeting antibiotics to which the bacteria are currently resistant.


Subject(s)
Neisseria gonorrhoeae , Peptidoglycan , Humans , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Peptidoglycan/metabolism , Mutation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Cell Wall/metabolism
4.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37662418

ABSTRACT

Infection with the Gram-negative species Neisseria gonorrhoeae leads to inflammation that is responsible for the disease symptoms of gonococcal urethritis, cervicitis, and pelvic inflammatory disease. During growth these bacteria release significant amounts of peptidoglycan (PG) fragments which elicit inflammatory responses in the human host. To better understand the mechanisms involved in PG synthesis and breakdown in N. gonorrhoeae, we characterized the effects of mutation of mltG. MltG has been identified in other bacterial species as a terminase that stops PG strand growth by cleaving the growing glycan. Mutation of mltG in N. gonorrhoeae did not affect bacterial growth rate but resulted in increased PG turnover, more cells of large size, decreased autolysis under non-growth conditions, and increased sensitivity to antibiotics that affect PG crosslinking. An mltG mutant released greatly increased amounts of PG monomers, PG dimers, and larger oligomers. In the mltG background, mutation of either ltgA or ltgD, encoding the lytic transglycosylases responsible for PG monomer liberation, resulted in wild-type levels of PG monomer release. Bacterial two-hybrid assays identified positive interactions of MltG with synthetic penicillin-binding proteins PBP1 and PBP2 and the PG-degrading endopeptidase PBP4 (PbpG). These data are consistent with MltG acting as a terminase in N. gonorrhoeae and suggest that absence of MltG activity results in excessive PG growth and extra PG in the sacculus that must be degraded by lytic transglycosylases including LtgA and LtgD. Furthermore, absence of MltG causes a cell wall defect that is manifested as large cell size and antibiotic sensitivity.

5.
mBio ; 14(4): e0120323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37389444

ABSTRACT

The bacterial cell envelope is a key subcellular compartment with important roles in antibiotic resistance, nutrient acquisition, and cell morphology. We seek to gain a better understanding of proteins that contribute to the function of the cell envelope in Alphaproteobacteria. Using Rhodobacter sphaeroides, we show that a previously uncharacterized protein, RSP_1200, is an outer membrane (OM) lipoprotein that non-covalently binds peptidoglycan (PG). Using a fluorescently tagged version of this protein, we find that RSP_1200 undergoes a dynamic repositioning during the cell cycle and is enriched at the septum during cell division. We show that the position of RSP_1200 mirrors the location of FtsZ rings, leading us to propose that RSP_1200 is a newly identified component of the R. sphaeroides' divisome. Additional support for this hypothesis includes the co-precipitation of RSP_1200 with FtsZ, the Pal protein, and several predicted PG L,D-transpeptidases. We also find that a ∆RSP_1200 mutation leads to defects in cell division, sensitivity to PG-active antibiotics, and results in the formation of OM protrusions at the septum during cell division. Based on these results, we propose to name RSP_1200 DalA (for division-associated lipoprotein A) and postulate that DalA serves as a scaffold to position or modulate the activity of PG transpeptidases that are needed to form envelope invaginations during cell division. We find that DalA homologs are present in members of the Rhodobacterales order within Alphaproteobacteria. Therefore, we propose that further analysis of this and related proteins will increase our understanding of the macromolecular machinery and proteins that participate in cell division in Gram-negative bacteria. IMPORTANCE Multi-protein complexes of the bacterial cell envelope orchestrate key processes like growth, division, biofilm formation, antimicrobial resistance, and production of valuable compounds. The subunits of these protein complexes are well studied in some bacteria, and differences in their composition and function are linked to variations in cell envelope composition, shape, and proliferation. However, some envelope protein complex subunits have no known homologs across the bacterial phylogeny. We find that Rhodobacter sphaeroides RSP_1200 is a newly identified lipoprotein (DalA) and that loss of this protein causes defects in cell division and changes the sensitivity to compounds, affecting cell envelope synthesis and function. We find that DalA forms a complex with proteins needed for cell division, binds the cell envelope polymer peptidoglycan, and colocalizes with enzymes involved in the assembly of this macromolecule. The analysis of DalA provides new information on the cell division machinery in this and possibly other Alphaproteobacteria.


Subject(s)
Alphaproteobacteria , Peptidyl Transferases , Peptidyl Transferases/metabolism , Peptidoglycan/metabolism , Cell Division , Lipoproteins/genetics , Lipoproteins/metabolism , Cell Wall/metabolism , Bacteria/metabolism , Alphaproteobacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Infect Immun ; 90(3): e0048521, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35225652

ABSTRACT

The human-restricted pathogen Neisseria meningitidis, which is best known for causing invasive meningococcal disease, has a nonpathogenic lifestyle as an asymptomatic colonizer of the human naso- and oropharyngeal space. N. meningitidis releases small peptidoglycan (PG) fragments during growth. It was demonstrated previously that N. meningitidis releases low levels of tripeptide PG monomer, which is an inflammatory molecule recognized by the human intracellular innate immune receptor NOD1. In the present study, we demonstrated that N. meningitidis released more PG-derived peptides than PG monomers. Using a reporter cell line overexpressing human NOD1, we showed that N. meningitidis activates NOD1 using PG-derived peptides. The generation of such peptides required the presence of the periplasmic N-acetylmuramyl-l-alanine amidase AmiC and the outer membrane lipoprotein NlpD. AmiC and NlpD were found to function in cell separation, and mutation of either amiC or nlpD resulted in large clumps of unseparated N. meningitidis cells instead of the characteristic diplococci. Using stochastic optical reconstruction microscopy, we demonstrated that FLAG epitope-tagged NlpD localized to the septum, while similarly tagged AmiC was found at the septum in some diplococci but was distributed around the cell in most cases. In a human whole-blood infection assay, an nlpD mutant was severely attenuated and showed particular sensitivity to complement. Thus, in N. meningitidis, the cell separation proteins AmiC and NlpD are necessary for NOD1 stimulation and survival during infection of human blood.


Subject(s)
Bacterial Proteins , Lipoproteins , Neisseria meningitidis , Nod1 Signaling Adaptor Protein , Peptidoglycan , Bacterial Proteins/metabolism , Cell Separation , Cell Wall/metabolism , Humans , Lipoproteins/metabolism , Meningococcal Infections/metabolism , Meningococcal Infections/microbiology , Neisseria meningitidis/metabolism , Nod1 Signaling Adaptor Protein/agonists , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Peptidoglycan/metabolism
7.
Front Microbiol ; 12: 784483, 2021.
Article in English | MEDLINE | ID: mdl-34975804

ABSTRACT

Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion. Bacterial two-hybrid experiments identified interactions between each partitioning protein and the relaxase. Subcellular fractionation demonstrated that ParA is found in the cellular membrane, whereas ParB is primarily in the membrane, but some of the protein is in the soluble fraction. Since TraI is known to be membrane-associated, these data suggest that the gonococcal relaxosome is a membrane-associated complex. In addition, we found that translation of ParA and ParB is controlled by an RNA switch. Different mutations within the stem-loop sequence predicted to alter folding of this RNA structure greatly increased or decreased levels of the partitioning proteins.

8.
mBio ; 11(3)2020 05 19.
Article in English | MEDLINE | ID: mdl-32430476

ABSTRACT

Activity of the NtrYX two-component system has been associated with important processes in diverse bacteria, ranging from symbiosis to nitrogen and energy metabolism. In the facultative alphaproteobacterium Rhodobacter sphaeroides, loss of the two-component system NtrYX results in increased lipid production and sensitivity to some known cell envelope-active compounds. In this study, we show that NtrYX directly controls multiple properties of the cell envelope. We find that the response regulator NtrX binds upstream of cell envelope genes, including those involved in peptidoglycan biosynthesis and modification and in cell division. We show that loss of NtrYX impacts the cellular levels of peptidoglycan precursors and lipopolysaccharide and alters cell envelope structure, increasing cell length and the thickness of the periplasm. Cell envelope function is also disrupted in the absence of NtrYX, resulting in increased outer membrane permeability. Based on the properties of R. sphaeroides cells lacking NtrYX and the target genes under direct control of this two-component system, we propose that NtrYX plays a previously undescribed, and potentially conserved, role in the assembly, structure, and function of the cell envelope in a variety of bacteria.IMPORTANCE The bacterial cell envelope provides many important functions. It protects cells from harsh environments, serves as a selective permeability barrier, houses bioenergetic functions, defines sensitivity to antibacterial agents, and plays a crucial role in biofilm formation, symbiosis, and virulence. Despite the important roles of this cellular compartment, we lack a detailed understanding of the biosynthesis and remodeling of the cell envelope. Here, we report that the R. sphaeroides two-component signaling system NtrYX is a previously undescribed regulator of cell envelope processes, providing evidence that it is directly involved in controlling transcription of genes involved in cell envelope assembly, structure, and function in this and possibly other bacteria. Thus, our data report on a newly discovered process used by bacteria to assemble and remodel the cell envelope.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane/physiology , Gene Expression Regulation, Bacterial , Rhodobacter sphaeroides/genetics , Bacterial Outer Membrane Proteins/metabolism , Gene Expression Profiling , Rhodobacter sphaeroides/metabolism , Signal Transduction
9.
Elife ; 92020 02 05.
Article in English | MEDLINE | ID: mdl-32022687

ABSTRACT

Lytic transglycosylases (LT) are enzymes involved in peptidoglycan (PG) remodeling. However, their contribution to cell-wall-modifying complexes and their potential as antimicrobial drug targets remains unclear. Here, we determined a high-resolution structure of the LT, an outer membrane lipoprotein from Neisseria species with a disordered active site helix (alpha helix 30). We show that deletion of the conserved alpha-helix 30 interferes with the integrity of the cell wall, disrupts cell division, cell separation, and impairs the fitness of the human pathogen Neisseria meningitidis during infection. Additionally, deletion of alpha-helix 30 results in hyperacetylated PG, suggesting this LtgA variant affects the function of the PG de-O-acetylase (Ape 1). Our study revealed that Ape 1 requires LtgA for optimal function, demonstrating that LTs can modulate the activity of their protein-binding partner. We show that targeting specific domains in LTs can be lethal, which opens the possibility that LTs are useful drug-targets.


Bacteria are surrounded by a tough yet flexible wall that protects the cell and serves as an anchor for several of the cell's structures. This cell wall contains a large mesh-like molecule called peptidoglycan made of many repeated building blocks. When a bacterial cell divides in two, it needs to make more of this material. Making peptidoglycan involves two different sets of enzymes working together: "polymerases" are the enzymes that link the individual building blocks to peptidoglycan, one after the other; while "lytic transglycosylases" are enzymes that modify the peptidoglycan to create space for the addition of new building blocks and for assemblies of proteins that must span the cell wall. Lytic transglycosylases are known to assemble with other proteins and enzymes to form the cell's peptidoglycan-modifying machinery, but it was not clear exactly what purpose they serve within these "enzyme complexes". It was also unclear whether these enzymes would be good targets for new antibiotics. To help answer these questions, Williams et al. looked at a lytic transglycoslyase called LtgA. This enzyme is originally from Neisseria meningitidis, a bacterium that can cause meningitis and life-threatening sepsis in humans. Williams et al. discovered that part of the enzyme's active site ­ the region of an enzyme where the chemical reaction takes ­ can switch from an ordered helix to a disordered, flexible loop. Bacteria were then genetically engineered to make a version of the enzyme that lacked this helix. These bacteria had weaker cell walls and were deformed; they were also less able to grow and divide, both in the laboratory and in a mouse model of infection. Further analysis showed that the deletion of the helix from the enzyme resulted in the peptidoglycan being modified much more than normal, which could likely explain their reduced virulence. Williams et al. also found that deleting the helix from LtgA interfered with the activity of a protein that interacts with this enzyme, called Ape1, which also contributed to the fragility of the cell wall. This shows that lytic transglycosylases assembled into enzyme complexes can alter the activities of other proteins in the complex. Together these findings show that researchers could target one enzyme in a complex in bacteria, and disrupt the activity of other proteins in that complex. This highlights the possibility of considering enzyme complexes as useful targets for new drugs, which is important considering the current problem of antibiotic resistance.


Subject(s)
Cell Wall/metabolism , Glycosyltransferases/metabolism , Neisseria meningitidis/metabolism , Amino Acid Sequence , Catalytic Domain , Cell Wall/enzymology , Glycosyltransferases/chemistry , Morphogenesis , Neisseria meningitidis/enzymology , Peptidoglycan/metabolism , Protein Binding
10.
Methods Mol Biol ; 1997: 111-120, 2019.
Article in English | MEDLINE | ID: mdl-31119621

ABSTRACT

The composition of Neisseria peptidoglycan has been of scientific interest for over four decades. Initial investigations focused on discovering the mechanisms causing rising rates of antibiotic resistance in N. gonorrhoeae by determining differences in peptidoglycan composition in penicillin susceptible and resistant strains. The discovery that cytotoxic peptidoglycan fragments are also released by Neisseria furthered the interest in peptidoglycan composition. This method describes the purification, enzymatic degradation, and separation of peptidoglycan fragments by high-performance liquid chromatography (HPLC). It also describes the preparation of samples so that they can be positively identified by mass spectrometry.


Subject(s)
Bacterial Proteins/isolation & purification , Neisseria gonorrhoeae/chemistry , Peptidoglycan/isolation & purification , Bacterial Proteins/chemistry , Cell Wall/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Neisseria gonorrhoeae/cytology , Peptidoglycan/chemistry
11.
Front Microbiol ; 10: 73, 2019.
Article in English | MEDLINE | ID: mdl-30766523

ABSTRACT

Neisseria gonorrhoeae and Neisseria meningitidis release peptidoglycan (PG) fragments from the cell as the bacteria grow. For N. gonorrhoeae these PG fragments are known to cause damage to human Fallopian tube tissue in organ culture that mimics the damage seen in patients with pelvic inflammatory disease. N. meningitidis also releases pro-inflammatory PG fragments, but in smaller amounts than those from N. gonorrhoeae. It is not yet known if PG fragment release contributes to the highly inflammatory conditions of meningitis and meningococcemia caused by N. meningitidis. Examination of the mechanisms of PG degradation and recycling identified proteins required for these processes. In comparison to the model organism E. coli, the pathogenic Neisseria have far fewer PG degradation proteins, and some of these proteins show differences in subcellular localization compared to their E. coli homologs. In particular, some N. gonorrhoeae PG degradation proteins were demonstrated to be in the outer membrane while their homologs in E. coli were found free in the periplasm or in the cytoplasm. The localization of two of these proteins was demonstrated to affect PG fragment release. Another major factor for PG fragment release is the allele of ampG. Gonococcal AmpG was found to be slightly defective compared to related PG fragment permeases, thus leading to increased release of PG. A number of additional PG-related factors affect other virulence functions in Neisseria. Endopeptidases and carboxypeptidases were found to be required for type IV pilus production and resistance to hydrogen peroxide. Also, deacetylation of PG was required for virulence of N. meningitidis as well as normal cell size. Overall, we describe the processes involved in PG degradation and recycling and how certain characteristics of these proteins influence the interactions of these pathogens with their host.

12.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30510100

ABSTRACT

Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.


Subject(s)
Neisseria gonorrhoeae/pathogenicity , Nod1 Signaling Adaptor Protein/physiology , Penicillin-Binding Proteins/physiology , Peptide Fragments/metabolism , Peptidoglycan/metabolism , Cell Wall/metabolism , Endopeptidases/metabolism , Glycosyltransferases/metabolism , Humans , Neisseria gonorrhoeae/genetics , Nod1 Signaling Adaptor Protein/metabolism , Penicillin-Binding Proteins/genetics , Signal Transduction/physiology
13.
Mol Microbiol ; 109(2): 135-149, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29573486

ABSTRACT

Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection gonorrhea and is adapted to survive in humans, its only host. The N. gonorrhoeae cell wall is critical for maintaining envelope integrity, resisting immune cell killing and production of cytotoxic peptidoglycan (PG) fragments. Deletion of the N. gonorrhoeae strain FA1090 genes encoding two predicted low-molecular-mass, penicillin-binding proteins (LMM PBPs), DacB and DacC, substantially altered the PG cross-linking. Loss of the DacB peptidase resulted in global alterations to the PG composition, while loss of the DacC protein affected a much narrower subset of PG peptide components. A double ΔdacB/ΔdacC mutant resembled the ΔdacB single mutant, but had an even greater level of cross-linked PG. While single ΔdacB or ΔdacC mutants did not show any major phenotypes, the ΔdacB/ΔdacC mutant displayed an altered cellular morphology, decreased resistance to antibiotics and increased sensitivity to detergent-mediated death. Loss of the two proteins also drastically reduced the number of Type IV pili (Tfp), a critical virulence factor. The decreased piliation reduced transformation efficiency and correlated with increased growth rate. While these two LMM PBPs differentially alter the PG composition, their overlapping effects are essential to proper envelope function and expression of factors critical for pathogenesis.

14.
Bio Protoc ; 7(15)2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28932761

ABSTRACT

Peptidoglycan (murein) is a vital component of the cell wall of nearly all bacteria, composed of sugars linked by short peptides. This protocol describes the purification of macromolecular peptidoglycan from cultured bacteria and the analysis of enzyme-digested peptidoglycan fragments using high performance liquid chromatography (HPLC). Digested peptidoglycan fragments can be identified by mass spectrometry, or predicted by comparing retention times with other published chromatograms. The quantitative nature of this method allows for the measurement of changes to peptidoglycan composition between different species of bacteria, growth conditions, or mutations. This method can determine the overall architecture of peptidoglycan, such as peptide stem length, the extent of cross-linking, and modifications. Muropeptide analysis has been used to study the function of peptidoglycan-associated proteins and the mechanisms by which bacteria acquire antibiotic resistance.

15.
Cell Microbiol ; 19(3)2017 03.
Article in English | MEDLINE | ID: mdl-27597434

ABSTRACT

Symptomatic infection by Neisseria gonorrhoeae (Gc) produces a potent inflammatory response, resulting in a neutrophil-rich exudate. A population of Gc can survive the killing activities of neutrophils for reasons not completely understood. Unlike other Gram-negative bacteria, Gc releases monomeric peptidoglycan (PG) extracellularly, dependent on two nonessential, nonredundant lytic transglycosylases (LTs), LtgA and LtgD. PG released by LtgA and LtgD can stimulate host immune responses. We report that ΔltgAΔltgD Gc were decreased in survival in the presence of primary human neutrophils but otherwise grew equally to wild-type Gc. Adding PG monomer failed to alter ΔltgAΔltgD Gc survival. Thus, LTs protect Gc from neutrophils independently of monomer release. We found two reasons to explain decreased survival of the double LT mutant. First, ΔltgAΔltgD Gc was more sensitive to the neutrophil antimicrobial proteins lysozyme and neutrophil elastase, but not others. Sensitivity to lysozyme correlated with decreased Gc envelope integrity. Second, exposure of neutrophils to ΔltgAΔltgD Gc increased the release of neutrophil granule contents extracellularly and into Gc phagosomes. We conclude that LtgA and LtgD protect Gc from neutrophils by contributing to envelope integrity and limiting bacterial exposure to select granule-localized antimicrobial proteins. These observations are the first to link bacterial degradation by lysozyme to increased neutrophil activation.


Subject(s)
Anti-Infective Agents/metabolism , Microbial Viability , Muramidase/metabolism , Neisseria gonorrhoeae/enzymology , Neutrophils/immunology , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Gene Deletion , Humans , Neisseria gonorrhoeae/drug effects , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/physiology , Peptidoglycan Glycosyltransferase/genetics
16.
Mol Microbiol ; 102(5): 865-881, 2016 12.
Article in English | MEDLINE | ID: mdl-27608412

ABSTRACT

Neisseria gonorrhoeae releases peptidoglycan (PG) fragments during infection that provoke a large inflammatory response and, in pelvic inflammatory disease, this response leads to the death and sloughing of ciliated cells of the Fallopian tube. We characterized the biochemical functions and localization of two enzymes responsible for the release of proinflammatory PG fragments. The putative lytic transglycosylases LtgA and LtgD were shown to create the 1,6-anhydromuramyl moieties, and both enzymes were able to digest a small, synthetic tetrasaccharide dipeptide PG fragment into the cognate 1,6-anhydromuramyl-containing reaction products. Degradation of tetrasaccharide PG fragments by LtgA is the first demonstration of a family 1 lytic transglycosylase exhibiting this activity. Pulse-chase experiments in gonococci demonstrated that LtgA produces a larger amount of PG fragments than LtgD, and a vast majority of these fragments are recycled. In contrast, LtgD was necessary for wild-type levels of PG precursor incorporation and produced fragments predominantly released from the cell. Additionally, super-resolution microscopy established that LtgA localizes to the septum, whereas LtgD is localized around the cell. This investigation suggests a model where LtgD produces PG monomers in such a way that these fragments are released, whereas LtgA creates fragments that are mostly taken into the cytoplasm for recycling.


Subject(s)
Neisseria gonorrhoeae/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/enzymology , Cell Wall/metabolism , Mutation , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Peptidoglycan Glycosyltransferase/genetics
17.
Methods Mol Biol ; 1440: 185-200, 2016.
Article in English | MEDLINE | ID: mdl-27311673

ABSTRACT

Most bacteria break down a significant portion of their cell wall peptidoglycan during each round of growth and cell division. This process generates peptidoglycan fragments of various sizes that can either be imported back into the cytoplasm for recycling or released from the cell. Released fragments have been shown to act as microbe-associated molecular patterns for the initiation of immune responses, as triggers for the initiation of mutualistic host-microbe relationships, and as signals for cell-cell communication in bacteria. Characterizing these released peptidoglycan fragments can, therefore, be considered an important step in understanding how microbes communicate with other organisms in their environments. In this chapter, we describe methods for labeling cell wall peptidoglycan, calculating the rate at which peptidoglycan is turned over, and collecting released peptidoglycan to determine the abundance and species of released fragments. Methods are described for both the separation of peptidoglycan fragments by size-exclusion chromatography and further detailed analysis by HPLC.


Subject(s)
Cell Wall/metabolism , Peptidoglycan/chemistry , Bacterial Proteins/chemistry , Cell Wall/chemistry , Chromatography, Gel , Chromatography, Reverse-Phase , Escherichia coli/chemistry , Escherichia coli/metabolism , Neisseria gonorrhoeae/chemistry , Neisseria gonorrhoeae/metabolism
18.
J Biol Chem ; 287(35): 29765-75, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22791716

ABSTRACT

The translation of non-stop mRNA (which lack in-frame stop codons) represents a significant quality control problem for all organisms. In eubacteria, the transfer-messenger RNA (tmRNA) system facilitates recycling of stalled ribosomes from non-stop mRNA in a process termed trans-translation or ribosome rescue. During rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which promotes polypeptide degradation after release from the stalled ribosome. Escherichia coli possesses an additional ribosome rescue pathway mediated by the ArfA peptide. The E. coli arfA message contains a hairpin structure that is cleaved by RNase III to produce a non-stop transcript. Therefore, ArfA levels are controlled by tmRNA through ssrA-peptide tagging and proteolysis. Here, we examine whether ArfA homologues from other bacteria are also regulated by RNase III and tmRNA. We searched 431 arfA coding sequences for mRNA secondary structures and found that 82.8% of the transcripts contain predicted hairpins in their 3'-coding regions. The arfA hairpins from Haemophilus influenzae, Proteus mirabilis, Vibrio fischeri, and Pasteurella multocida are all cleaved by RNase III as predicted, whereas the hairpin from Neisseria gonorrhoeae functions as an intrinsic transcription terminator to generate non-stop mRNA. Each ArfA homologue is ssrA-tagged and degraded when expressed in wild-type E. coli cells, but accumulates in mutants lacking tmRNA. Together, these findings show that ArfA synthesis from non-stop mRNA is a conserved mechanism to regulate the alternative ribosome rescue pathway. This strategy ensures that ArfA homologues are only deployed when the tmRNA system is incapacitated or overwhelmed by stalled ribosomes.


Subject(s)
Codon, Terminator , Escherichia coli Proteins/biosynthesis , Escherichia coli/metabolism , Protein Biosynthesis/physiology , Proteolysis , RNA, Bacterial/metabolism , RNA-Binding Proteins/biosynthesis , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Nucleic Acid Conformation , RNA, Bacterial/genetics , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Ribonuclease III/metabolism , Ribosomes/genetics , Ribosomes/metabolism
19.
Mol Microbiol ; 80(5): 1204-19, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21435036

ABSTRACT

Translation of mRNA lacking an in-frame stop codon leads to ribosome arrest at the 3' end of the transcript. In bacteria, the tmRNA quality control system recycles these stalled ribosomes and tags the incomplete nascent chains for degradation. Although ubiquitous in eubacteria, the ssrA gene encoding tmRNA is not essential for the viability of Escherichia coli and other model bacterial species. ArfA (YhdL) is a mediator of tmRNA-independent ribosome rescue that is essential for the viability of E. coliΔssrA mutants. Here, we demonstrate that ArfA is synthesized from truncated mRNA and therefore regulated by tmRNA tagging activity. RNase III cleaves a hairpin structure within the arfA-coding sequence to produce transcripts that lack stop codons. In the absence of tmRNA tagging, truncated ArfA chains are released from the ribosome. The truncated ArfAΔ18 protein (which lacks 18 C-terminal residues) is functional in ribosome rescue and supports ΔssrA cell viability when expressed from the arfA locus. Other proteobacterial arfA genes also encode hairpins, and transcripts from Dickeya dadantii and Salmonella typhimurium are cleaved by RNase III when expressed in E. coli. Thus, synthesis of ArfA from truncated mRNA appears to be a general mechanism to regulate alternative ribosome rescue activity.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Protein Biosynthesis , RNA, Bacterial/metabolism , RNA-Binding Proteins/genetics , Ribosomes/metabolism , Bacteria/genetics , Bacteria/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Nucleic Acid Conformation , RNA, Bacterial/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomes/genetics
20.
Mol Microbiol ; 79(2): 331-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21219455

ABSTRACT

RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.


Subject(s)
Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Codon, Terminator , Genetic Complementation Test , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Peptide Chain Termination, Translational , Peptide Termination Factors/metabolism , RNA, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...