Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(6): 2378-2386, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38285499

ABSTRACT

Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I2/H2O, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.


Subject(s)
Gold , Oligonucleotides , Oligonucleotide Array Sequence Analysis , Gold/chemistry , DNA , Tin Compounds/chemistry , Oxidation-Reduction
2.
Anal Chem ; 95(41): 15384-15393, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37801728

ABSTRACT

Glass is by far the most common substrate for biomolecular arrays, including high-throughput sequencing flow cells and microarrays. The native glass hydroxyl surface is modified by using silane chemistry to provide appropriate functional groups and reactivities for either in situ synthesis or surface immobilization of biologically or chemically synthesized biomolecules. These arrays, typically of oligonucleotides or peptides, are then subjected to long incubation times in warm aqueous buffers prior to fluorescence readout. Under these conditions, the siloxy bonds to the glass are susceptible to hydrolysis, resulting in significant loss of biomolecules and concomitant loss of signal from the assay. Here, we demonstrate that functionalization of glass surfaces with dipodal silanes results in greatly improved stability compared to equivalent functionalization with standard monopodal silanes. Using photolithographic in situ synthesis of DNA, we show that dipodal silanes are compatible with phosphoramidite chemistry and that hybridization performed on the resulting arrays provides greatly improved signal and signal-to-noise ratios compared with surfaces functionalized with monopodal silanes.


Subject(s)
High-Throughput Screening Assays , Silanes , Oligonucleotide Array Sequence Analysis/methods , Silanes/chemistry , Nucleic Acid Hybridization/methods , DNA/chemistry , Glass/chemistry , Surface Properties
3.
Methods ; 213: 33-41, 2023 05.
Article in English | MEDLINE | ID: mdl-37001684

ABSTRACT

DNA microarrays are very useful tools to study the realm of nucleic acids interactions at high throughput. The conventional approach to microarray synthesis employs phosphoramidite chemistry and yields unmodified DNA generally attached to a surface at the 3' terminus. Having a freely accessible 3'-OH instead of 5'-OH is desirable too, and being able to introduce nucleoside analogs in a combinatorial manner is highly relevant in the context of nucleic acid therapeutics and in aptamer research. Here, we describe an enzymatic approach to the synthesis of high-density DNA microarrays that can also contain chemical modifications. The method uses a standard DNA microarray, to which a DNA primer is covalently bound through photocrosslinking. The extension of the primer with a DNA polymerase yields double-stranded DNA but is also amenable to the incorporation of modified dNTPs. Further processing with T7 exonuclease, which catalyzes the degradation of DNA in a specific (5'→3') direction, results in template strand removal. Overall, the method produces surface-bound natural and non-natural DNA oligonucleotides, is applicable to commercial microarrays and paves the way for the preparation of combinatorial, chemically modified aptamer libraries.


Subject(s)
DNA-Directed DNA Polymerase , DNA , Oligonucleotide Array Sequence Analysis , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA/genetics , DNA Primers/metabolism , DNA Replication/genetics , Oligonucleotides
4.
Curr Protoc ; 3(2): e667, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36794904

ABSTRACT

Oligonucleotide microarrays are used to investigate the interactome of nucleic acids. DNA microarrays are commercially available, whereas equivalent RNA microarrays are not. This protocol describes a method to convert DNA microarrays of any density and complexity into RNA microarrays using only readily available materials and reagents. This simple conversion protocol will facilitate the accessibility of RNA microarrays to a wide range of researchers. In addition to general considerations for the design of a template DNA microarray, this procedure describes the experimental steps of hybridization of an RNA primer to the immobilized DNA, followed by its covalent attachment via psoralen-mediated photocrosslinking. The subsequent enzymatic processing steps comprise the extension of the primer with T7 RNA polymerase to generate complementary RNA, and finally the removal of the DNA template with TURBO DNase. Beyond the conversion process, we also describe approaches to detect the RNA product either by internal labeling with fluorescently labeled NTPs or via hybridization to the product strand, a step that can then be complemented by an RNase H assay to confirm the nature of the product. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Conversion of a DNA microarray to an RNA microarray Alternate Protocol: Detection of RNA via incorporation of Cy3-UTP Support Protocol 1: Detection of RNA via hybridization Support Protocol 2: RNase H assay.


Subject(s)
Nucleic Acids , RNA , RNA/genetics , Oligonucleotide Array Sequence Analysis/methods , Nucleic Acid Hybridization , Ribonuclease H
5.
Nat Commun ; 13(1): 3772, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773271

ABSTRACT

RNA catalytic and binding interactions with proteins and small molecules are fundamental elements of cellular life processes as well as the basis for RNA therapeutics and molecular engineering. In the absence of quantitative predictive capacity for such bioaffinity interactions, high throughput experimental approaches are needed to sufficiently sample RNA sequence space. Here we report on a simple and highly accessible approach to convert commercially available customized DNA microarrays of any complexity and density to RNA microarrays via a T7 RNA polymerase-mediated extension of photocrosslinked methyl RNA primers and subsequent degradation of the DNA templates.


Subject(s)
DNA-Directed RNA Polymerases , RNA , Base Sequence , DNA Replication , DNA-Directed RNA Polymerases/metabolism , Oligonucleotide Array Sequence Analysis , RNA/chemistry , RNA/genetics
6.
ACS Synth Biol ; 10(7): 1750-1760, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34156829

ABSTRACT

The untemplated activity of terminal deoxynucleotidyl transferase (TdT) represents its most appealing feature. Its use is well established in applications aiming for extension of a DNA initiator strand, but a more recent focus points to its potential in enzymatic de novo synthesis of DNA. Whereas its low substrate specificity for nucleoside triphosphates has been studied extensively, here we interrogate how the activity of TdT is modulated by the nature of the initiating strands, in particular their length, chemistry, and nucleotide composition. Investigation of full permutational libraries of mono- to pentamers of d-DNA, l-DNA, and 2'O-methyl-RNA of differing directionality immobilized to glass surfaces, and generated via photolithographic in situ synthesis, shows that the efficiency of extension strongly depends on the nucleobase sequence. We also show TdT being catalytically active on a non-nucleosidic substrate, hexaethylene glycol. These results offer new perspectives on constraints and strategies for de novo synthesis of DNA using TdT regarding the requirements for initiation of enzymatic generation of DNA.


Subject(s)
DNA Nucleotidylexotransferase/metabolism , DNA Replication , Catalysis , DNA-Directed DNA Polymerase/metabolism , Nucleotides/chemistry , Stereoisomerism , Substrate Specificity
7.
Chemistry ; 26(63): 14310-14314, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32515523

ABSTRACT

Photolithographic in situ synthesis of nucleic acids enables extremely high oligonucleotide sequence density as well as complex surface patterning and combined spatial and molecular information encoding. No longer limited to DNA synthesis, the technique allows for total control of both chemical and Cartesian space organization on surfaces, suggesting that hybridization patterns can be used to encode, display or encrypt informative signals on multiple chemically orthogonal levels. Nevertheless, cross-hybridization reduces the available sequence space and limits information density. Here we introduce an additional, fully independent information channel in surface patterning with in situ l-DNA synthesis. The bioorthogonality of mirror-image DNA duplex formation prevents both cross-hybridization on chimeric l-/d-DNA microarrays and also results in enzymatic orthogonality, such as nuclease-proof DNA-based signatures on the surface. We show how chimeric l-/d-DNA hybridization can be used to create informative surface patterns including QR codes, highly counterfeiting resistant authenticity watermarks, and concealed messages within high-density d-DNA microarrays.


Subject(s)
DNA , Surface Properties , DNA/chemistry , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Oligonucleotides/chemistry
8.
Nat Commun ; 10(1): 3805, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444344

ABSTRACT

The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.


Subject(s)
Biosensing Techniques/instrumentation , Microtechnology/methods , Nucleic Acids/chemistry , Cross-Linking Reagents/chemistry , Fluorescence , Light , Nucleic Acid Conformation/radiation effects , Nucleic Acids/radiation effects , Oligonucleotides/chemistry , Oligonucleotides/radiation effects , Photochemical Processes/radiation effects
9.
J Vis Exp ; (150)2019 08 12.
Article in English | MEDLINE | ID: mdl-31449249

ABSTRACT

Photolithography is a powerful technique for the synthesis of DNA oligonucleotides on glass slides, as it combines the efficiency of phosphoramidite coupling reactions with the precision and density of UV light reflected from micrometer-sized mirrors. Photolithography yields microarrays that can accommodate from hundreds of thousands up to several million different DNA sequences, 100-nt or longer, in only a few hours. With this very large sequence space, microarrays are ideal platforms for exploring the mechanisms of nucleic acid·ligand interactions, which are particularly relevant in the case of RNA. We recently reported on the preparation of a new set of RNA phosphoramidites compatible with in situ photolithography and which were subsequently used to grow RNA oligonucleotides, homopolymers as well as mixed-base sequences. Here, we illustrate in detail the process of RNA microarray fabrication, from the experimental design, to instrumental setup, array synthesis, deprotection and final hybridization assay using a template 25mer sequence containing all four bases as an example. In parallel, we go beyond hybridization-based experiments and exploit microarray photolithography as an inexpensive gateway to complex nucleic acid libraries. To do so, high-density DNA microarrays are fabricated on a base-sensitive monomer that allows the DNA to be conveniently cleaved and retrieved after synthesis and deprotection. The fabrication protocol is optimized so as to limit the number of synthetic errors and to that effect, a layer of ß-carotene solution is introduced to absorb UV photons that may otherwise reflect back onto the synthesis substrates. We describe in a step-by-step manner the complete process of library preparation, from design to cleavage and quantification.


Subject(s)
DNA/genetics , Nucleic Acid Hybridization/genetics , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , RNA/genetics , Gene Library , Humans , Nucleic Acids/genetics , Oligonucleotides/genetics
10.
Sci Rep ; 8(1): 15099, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305718

ABSTRACT

DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3' terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3'-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5'→3' synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5' end and with free 3' hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3'→5' synthesis.


Subject(s)
DNA/biosynthesis , Oligonucleotide Array Sequence Analysis/methods , DNA/chemistry , Fluorescence , Gene Expression Regulation , Organophosphorus Compounds/chemistry , Photolysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...