Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 120(6): 644-657, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38309955

ABSTRACT

AIMS: Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS: Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION: Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.


Subject(s)
Coxsackievirus Infections , Cytokines , Disease Models, Animal , Energy Metabolism , Enterovirus B, Human , Glycolysis , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart , Myocytes, Cardiac , Ubiquitins , Animals , Ubiquitins/metabolism , Ubiquitins/genetics , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Coxsackievirus Infections/genetics , Cytokines/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/pathology , Enterovirus B, Human/pathogenicity , Enterovirus B, Human/metabolism , Humans , Host-Pathogen Interactions , Male , Signal Transduction , Protein Processing, Post-Translational
2.
JCI Insight ; 9(4)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194289

ABSTRACT

The clinical spectrum of thyrotropin receptor-mediated (TSHR-mediated) diseases varies from loss-of-function mutations causing congenital hypothyroidism to constitutively active mutations (CAMs) leading to nonautoimmune hyperthyroidism (NAH). Variation at the TSHR locus has also been associated with altered lipid and bone metabolism and autoimmune thyroid diseases. However, the extrathyroidal roles of TSHR and the mechanisms underlying phenotypic variability among TSHR-mediated diseases remain unclear. Here we identified and characterized TSHR variants and factors involved in phenotypic variability in different patient cohorts, the FinnGen database, and a mouse model. TSHR CAMs were found in all 16 patients with NAH, with 1 CAM in an unexpected location in the extracellular leucine-rich repeat domain (p.S237N) and another in the transmembrane domain (p.I640V) in 2 families with distinct hyperthyroid phenotypes. In addition, screening of the FinnGen database revealed rare functional variants as well as distinct common noncoding TSHR SNPs significantly associated with thyroid phenotypes, but there was no other significant association between TSHR variants and more than 2,000 nonthyroid disease endpoints. Finally, our TSHR M453T-knockin model revealed that the phenotype was dependent on the mutation's signaling properties and was ameliorated by increased iodine intake. In summary, our data show that TSHR-mediated disease risk can be modified by variants at the TSHR locus both inside and outside the coding region as well as by altered TSHR-signaling and dietary iodine, supporting the need for personalized treatment strategies.


Subject(s)
Hyperthyroidism , Iodine , Receptors, Thyrotropin , Animals , Humans , Mice , Hyperthyroidism/congenital , Mutation , Phenotype , Receptors, G-Protein-Coupled/genetics , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism
3.
Pharmacol Res ; 197: 106971, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38032292

ABSTRACT

The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.


Subject(s)
Biological Evolution , Signal Transduction , Binding Sites , Protein Domains
4.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894796

ABSTRACT

G protein-coupled receptor 83 (GPR83) is a class A G protein-coupled receptor with predominant expression in the cerebellum and proposed function in the regulation of food intake and in anxiety-like behavior. The neuropeptide PEN has been suggested as a specific GPR83 ligand. However, conflicting reports exist about whether PEN is indeed able to bind and activate GPR83. This study was initiated to evaluate PEN as a potential ligand of GPR83. Employing several second messenger and other GPCR activation assays as well as a radioligand binding assay, and using multiple GPR83 plasmids and PEN peptides from different sources, no experimental evidence was found to support a role of PEN as a GPR83 ligand.


Subject(s)
Neuropeptides , Signal Transduction , Ligands , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Neuropeptides/metabolism , Peptides
5.
Chem Sci ; 14(40): 11105-11120, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37860641

ABSTRACT

The membrane-bound [NiFe]-hydrogenase of Cupriavidus necator is a rare example of a truly O2-tolerant hydrogenase. It catalyzes the oxidation of H2 into 2e- and 2H+ in the presence of high O2 concentrations. This characteristic trait is intimately linked to the unique Cys6[4Fe-3S] cluster located in the proximal position to the catalytic center and coordinated by six cysteine residues. Two of these cysteines play an essential role in redox-dependent cluster plasticity, which bestows the cofactor with the capacity to mediate two redox transitions at physiological potentials. Here, we investigated the individual roles of the two additional cysteines by replacing them individually as well as simultaneously with glycine. The crystal structures of the corresponding MBH variants revealed the presence of Cys5[4Fe-4S] or Cys4[4Fe-4S] clusters of different architecture. The protein X-ray crystallography results were correlated with accompanying biochemical, spectroscopic and electrochemical data. The exchanges resulted in a diminished O2 tolerance of all MBH variants, which was attributed to the fact that the modified proximal clusters mediated only one redox transition. The previously proposed O2 protection mechanism that detoxifies O2 to H2O using four protons and four electrons supplied by the cofactor infrastructure, is extended by our results, which suggest efficient shutdown of enzyme function by formation of a hydroxy ligand in the active site that protects the enzyme from O2 binding under electron-deficient conditions.

6.
Photochem Photobiol ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37675785

ABSTRACT

Phytochromes are photoreceptor proteins with a bilin chromophore that undergo photoconversion between two spectrally different forms, Pr and Pfr. Three domains, termed PAS, GAF, and PHY domains, constitute the N-terminal photosensory chromophore module (PCM); the C-terminus is often a histidine kinase module. In the Agrobacterium fabrum phytochrome Agp1, the autophosphorylation activity of the histidine kinase is high in the Pr and low in the Pfr form. Crystal structure analyses of PCMs suggest flexibility around position 308 in the Pr but not in the Pfr form. Here, we performed time-resolved fluorescence anisotropy measurements with different Agp1 mutants, each with a single cysteine residue at various positions. The fluorophore label Atto-488 was attached to each mutant, and time-resolved fluorescence anisotropy was measured in the Pr and Pfr forms. Fluorescence anisotropy curves were fitted with biexponential functions. Differences in the amplitude A2 of the second component between the PCM and the full-length variant indicate a mechanical coupling between position 362 and the histidine kinase. Pr-to-Pfr photoconversion induced no significant changes in the time constant t2 at any position. An intermediate t2 value at position 295, which is located in a compact environment, suggests flexibility around the nearby position 308 in Pr and in Pfr.

7.
Nat Plants ; 9(6): 987-1000, 2023 06.
Article in English | MEDLINE | ID: mdl-37156858

ABSTRACT

In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.


Subject(s)
RNA, Ribosomal , Ribosomes , Cytosol , RNA, Ribosomal/chemistry , Cryoelectron Microscopy , Phylogeny , Models, Molecular , Ribosomes/chemistry , Plants/genetics , Nicotiana/genetics
8.
Nat Commun ; 14(1): 898, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36797249

ABSTRACT

Ribosome biogenesis is a fundamental multi-step cellular process in all domains of life that involves the production, processing, folding, and modification of ribosomal RNAs (rRNAs) and ribosomal proteins. To obtain insights into the still unexplored early assembly phase of the bacterial 50S subunit, we exploited a minimal in vitro reconstitution system using purified ribosomal components and scalable reaction conditions. Time-limited assembly assays combined with cryo-EM analysis visualizes the structurally complex assembly pathway starting with a particle consisting of ordered density for only ~500 nucleotides of 23S rRNA domain I and three ribosomal proteins. In addition, our structural analysis reveals that early 50S assembly occurs in a domain-wise fashion, while late 50S assembly proceeds incrementally. Furthermore, we find that both ribosomal proteins and folded rRNA helices, occupying surface exposed regions on pre-50S particles, induce, or stabilize rRNA folds within adjacent regions, thereby creating cooperativity.


Subject(s)
Ribosomal Proteins , Ribosomes , Cryoelectron Microscopy , Ribosomes/metabolism , Ribosomal Proteins/metabolism , RNA, Ribosomal, 23S/genetics , Nucleotides/metabolism
9.
Rheumatology (Oxford) ; 62(6): 2284-2293, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36227102

ABSTRACT

OBJECTIVES: Scleroderma renal crisis (SRC) is a rare vascular complication of systemic sclerosis with substantial risks for end-stage renal disease and premature death. Activating autoantibodies (Abs) targeting the angiotensin II type 1 (AT1R) and the endothelin-1 type A receptor (ETAR) have been identified as predictors for SRC. Here, we sought to determine their pathogenic significance for acute renal vascular injury potentially triggering kidney failure and malignant hypertension. METHODS: IgG from patients with SRC was studied for AT1R and ETAR dependent biologic effects on isolated rat renal interlobar arteries and vascular cells including contraction, signalling and mechanisms of receptor activation. RESULTS: In myography experiments, patient IgG exerted vasoconstriction sensitive to inhibition of AT1R and ETAR. This relied on MEK-ERK signalling indicating functional relevance of anti-AT1R and anti-ETAR Abs. The contractile response to angiotensin II and endothelin-1 was amplified by patient IgG containing anti-AT1R and anti-ETAR Abs with substantial crosstalk between both receptors implicating autoimmune receptor hypersensitization. Co-immunoprecipitation experiments indicated heterodimerization between both receptor types which may enable the observed functional interrelation by direct structural interactions. CONCLUSION: We provide experimental evidence that agonistic Abs may contribute to SRC. This effect is presumably related to direct receptor stimulation and additional allosteric effects, at least in heterodimeric receptor constellations. Novel therapies targeted at autoimmune hyperactivation of AT1R and ETAR might improve outcomes in severe cases of SRC.


Subject(s)
Acute Kidney Injury , Scleroderma, Localized , Vascular System Injuries , Rats , Animals , Angiotensin II , Endothelin-1 , Autoantibodies , Receptor, Endothelin A , Immunoglobulin G
10.
Biomolecules ; 14(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275750

ABSTRACT

Phytochromes are photoreceptors of plants, fungi, slime molds bacteria and heterokonts. These biliproteins sense red and far-red light and undergo light-induced changes between the two spectral forms, Pr and Pfr. Photoconversion triggered by light induces conformational changes in the bilin chromophore around the ring C-D-connecting methine bridge and is followed by conformational changes in the protein. For plant phytochromes, multiple phytochrome interacting proteins that mediate signal transduction, nuclear translocation or protein degradation have been identified. Few interacting proteins are known as bacterial or fungal phytochromes. Here, we describe how the interacting partners were identified, what is known about the different interactions and in which context of signal transduction these interactions are to be seen. The three-dimensional arrangement of these interacting partners is not known. Using an artificial intelligence system-based modeling software, a few predicted and modulated examples of interactions of bacterial phytochromes with their interaction partners are interpreted.


Subject(s)
Phytochrome , Phytochrome/metabolism , Bacterial Proteins/metabolism , Artificial Intelligence , Plants/metabolism , Signal Transduction , Light
11.
Life (Basel) ; 12(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36362948

ABSTRACT

The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations' position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.

12.
iScience ; 25(10): 105087, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36164652

ABSTRACT

The G protein-coupled receptor 84 (GPR84) is found in immune cells and its expression is increased under inflammatory conditions. Activation of GPR84 by medium-chain fatty acids results in pro-inflammatory responses. Here, we screened available vertebrate genome data and found that GPR84 is present in vertebrates for more than 500 million years but absent in birds and a pseudogene in bats. Cloning and functional characterization of several mammalian GPR84 orthologs in combination with evolutionary and model-based structural analyses revealed evidence for positive selection of bear GPR84 orthologs. Naturally occurring human GPR84 variants are most frequent in Asian populations causing a loss of function. Further, we identified cis- and trans-2-decenoic acid, both known to mediate bacterial communication, as evolutionary highly conserved ligands. Our integrated set of approaches contributes to a comprehensive understanding of GPR84 in terms of evolutionary and structural aspects, highlighting GPR84 as a conserved immune cell receptor for bacteria-derived molecules.

13.
Biomolecules ; 12(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36009013

ABSTRACT

Melanocortin 4 receptor (MC4R) is part of the leptin-melanocortin pathway and plays an essential role in mediating energy homeostasis. Mutations in the MC4R are the most frequent monogenic cause for obesity. Due to increasing numbers of people with excess body weight, the MC4R has become a target of interest in the search of treatment options. We have previously reported that the MC4R forms homodimers, affecting receptor Gs signaling properties. Recent studies introducing setmelanotide, a novel synthetic MC4R agonist, suggest a predominant role of the Gq/11 pathway regarding weight regulation. In this study, we analyzed effects of inhibiting homodimerization on Gq/11 signaling using previously reported MC4R/CB1R chimeras. NanoBRETTM studies to determine protein-protein interaction were conducted, confirming decreased homodimerization capacities of chimeric receptors in HEK293 cells. Gq/11 signaling of chimeric receptors was analyzed using luciferase-based reporter gene (NFAT) assays. Results demonstrate an improvement of alpha-MSH-induced NFAT signaling of chimeras, reaching the level of setmelanotide signaling at wild-type MC4R (MC4R-WT). In summary, our study shows that inhibiting homodimerization has a setmelanotide-like effect on Gq/11 signaling, with chimeric receptors presenting increased potency compared to MC4R-WT. These findings indicate the potential of inhibiting MC4R homodimerization as a therapeutic target to treat obesity.


Subject(s)
Receptor, Melanocortin, Type 4 , alpha-MSH , Carrier Proteins , HEK293 Cells , Humans , Obesity/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/analogs & derivatives , alpha-MSH/metabolism , alpha-MSH/pharmacology , alpha-MSH/therapeutic use
14.
Proc Natl Acad Sci U S A ; 119(32): e2122037119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914163

ABSTRACT

Receptor-activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that associate with different G protein-coupled receptors (GPCRs), including the parathyroid hormone 1 receptor (PTH1R), a class B GPCR and an important modulator of mineral ion homeostasis and bone metabolism. However, it is unknown whether and how RAMP proteins may affect PTH1R function. Using different optical biosensors to measure the activation of PTH1R and its downstream signaling, we describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique preactivated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity. Additionally, RAMP2 increases both PTH- and PTHrP-triggered ß-arrestin2 recruitment to PTH1R. Employing homology modeling, we describe the putative structural molecular basis underlying our functional findings. These data uncover a critical role of RAMPs in the activation and signaling of a GPCR that may provide a new venue for highly specific modulation of GPCR function and advanced drug design.


Subject(s)
Receptor Activity-Modifying Protein 2 , Receptor, Parathyroid Hormone, Type 1 , Signal Transduction , Biosensing Techniques , Ligands , Parathyroid Hormone/metabolism , Receptor Activity-Modifying Protein 2/genetics , Receptor Activity-Modifying Protein 2/metabolism , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 2/metabolism
15.
Phys Chem Chem Phys ; 24(19): 11967-11978, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35527718

ABSTRACT

Phytochromes, found in plants, fungi, and bacteria, exploit light as a source of information to control physiological processes via photoswitching between two states of different physiological activity, i.e. a red-absorbing Pr and a far-red-absorbing Pfr state. Depending on the relative stability in the dark, bacterial phytochromes are divided into prototypical and bathy phytochromes, where the stable state is Pr and Pfr, respectively. In this work we studied representatives of these groups (prototypical Agp1 and bathy Agp2 from Agrobacterium fabrum) together with the bathy-like phytochrome XccBphP from Xanthomonas campestris by resonance Raman and IR difference spectroscopy. In all three phytochromes, the photoinduced conversions display the same mechanistic pattern as reflected by the chromophore structures in the various intermediate states. We also observed in each case the secondary structure transition of the tongue, which is presumably crucial for the function of phytochrome. The three phytochromes differ in details of the chromophore conformation in the various intermediates and the energetic barrier of their respective decay reactions. The specific protein environment in the chromophore pocket, which is most likely the origin for these small differences, also controls the proton transfer processes concomitant to the photoconversions. These proton translocations, which are tightly coupled to the structural transition of the tongue, presumably proceed via the same mechanism along the Pr → Pfr conversion whereas the reverse Pfr → Pr photoconversion includes different proton transfer pathways. Finally, classification of phytochromes in prototypical and bathy (or bathy-like) phytochromes is discussed in terms of molecular structure and mechanistic properties.


Subject(s)
Phytochrome , Bacteria/metabolism , Bacterial Proteins/chemistry , Phytochrome/chemistry , Protons
16.
Nat Chem ; 14(7): 823-830, 2022 07.
Article in English | MEDLINE | ID: mdl-35577919

ABSTRACT

The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.


Subject(s)
Phytochrome , Bacterial Proteins , Biliverdine/chemistry , Biliverdine/metabolism , Hydrogen Bonding , Isomerism , Phytochrome/chemistry , Phytochrome/metabolism , Protons
17.
Front Endocrinol (Lausanne) ; 13: 880002, 2022.
Article in English | MEDLINE | ID: mdl-35518926

ABSTRACT

In conjunction with the endothelin (ET) type A (ETAR) and type B (ETBR) receptors, angiotensin (AT) type 1 (AT1R) and type 2 (AT2R) receptors, are peptide-binding class A G-protein-coupled receptors (GPCRs) acting in a physiologically overlapping context. Angiotensin receptors (ATRs) are involved in regulating cell proliferation, as well as cardiovascular, renal, neurological, and endothelial functions. They are important therapeutic targets for several diseases or pathological conditions, such as hypertrophy, vascular inflammation, atherosclerosis, angiogenesis, and cancer. Endothelin receptors (ETRs) are expressed primarily in blood vessels, but also in the central nervous system or epithelial cells. They regulate blood pressure and cardiovascular homeostasis. Pathogenic conditions associated with ETR dysfunctions include cancer and pulmonary hypertension. While both receptor groups are activated by their respective peptide agonists, pathogenic autoantibodies (auto-Abs) can also activate the AT1R and ETAR accompanied by respective clinical conditions. To date, the exact mechanisms and differences in binding and receptor-activation mediated by auto-Abs as opposed to endogenous ligands are not well understood. Further, several questions regarding signaling regulation in these receptors remain open. In the last decade, several receptor structures in the apo- and ligand-bound states were determined with protein X-ray crystallography using conventional synchrotrons or X-ray Free-Electron Lasers (XFEL). These inactive and active complexes provide detailed information on ligand binding, signal induction or inhibition, as well as signal transduction, which is fundamental for understanding properties of different activity states. They are also supportive in the development of pharmacological strategies against dysfunctions at the receptors or in the associated signaling axis. Here, we summarize current structural information for the AT1R, AT2R, and ETBR to provide an improved molecular understanding.


Subject(s)
Angiotensins , Receptor, Angiotensin, Type 1 , Ligands , Receptor, Angiotensin, Type 1/metabolism , Receptor, Endothelin A/metabolism , Signal Transduction/physiology
18.
Int J Mol Sci ; 23(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35409344

ABSTRACT

The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1R-Abs-induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis.


Subject(s)
Antibodies , Receptor, Angiotensin, Type 1 , Alanine , Angiotensin II , Antibodies/pharmacology , Cell Proliferation , HEK293 Cells , Humans , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism
19.
FEBS J ; 289(13): 3826-3838, 2022 07.
Article in English | MEDLINE | ID: mdl-35066984

ABSTRACT

RNA viruses in the Picornaviridae family express a large 250 kDa viral polyprotein that is processed by virus-encoded proteinases into mature functional proteins with specific functions for virus replication. One of these proteins is the highly conserved enteroviral transmembrane protein 3A that assists in reorganizing cellular membranes associated with the Golgi apparatus. Here, we studied the molecular properties of the Coxsackievirus B3 (CVB3) protein 3A with regard to its dimerization and its functional stability. By applying mutational analysis and biochemical characterization, we demonstrate that protein 3A forms DTT-sensitive disulfide-linked dimers via a conserved cytosolic cysteine residue at position 38 (Cys38). Homodimerization of CVB3 protein 3A via Cys38 leads to profound stabilization of the protein, whereas a C38A mutation promotes a rapid proteasome-dependent elimination of its monomeric form. The lysosomotropic agent chloroquine (CQ) exerted only minor stabilizing effects on the 3A monomer but resulted in enrichment of the homodimer. Our experimental data demonstrate that disulfide linkages via a highly conserved Cys-residue in enteroviral protein 3A have an important role in the dimerization of this viral protein, thereby preserving its stability and functional integrity.


Subject(s)
Disulfides , Enterovirus B, Human , Dimerization , Disulfides/metabolism , Enterovirus B, Human/genetics , Enterovirus B, Human/metabolism , HeLa Cells , Humans , Viral Proteins/metabolism , Virus Replication
20.
Mol Neurodegener ; 16(1): 80, 2021 11 27.
Article in English | MEDLINE | ID: mdl-34838071

ABSTRACT

BACKGROUND: MicroRNA (miRNA) expression in the brain is altered in neurodegenerative diseases. Recent studies demonstrated that selected miRNAs conventionally regulating gene expression at the post-transcriptional level can act extracellularly as signaling molecules. The identity of miRNA species serving as membrane receptor ligands involved in neuronal apoptosis in the central nervous system (CNS), as well as the miRNAs' sequence and structure required for this mode of action remained largely unresolved. METHODS: Using a microarray-based screening approach we analyzed apoptotic cortical neurons of C56BL/6 mice and their supernatant with respect to alterations in miRNA expression/presence. HEK-Blue Toll-like receptor (TLR) 7/8 reporter cells, primary microglia and macrophages derived from human and mouse were employed to test the potential of the identified miRNAs released from apoptotic neurons to serve as signaling molecules for the RNA-sensing receptors. Biophysical and bioinformatical approaches, as well as immunoassays and sequential microscopy were used to analyze the interaction between candidate miRNA and TLR. Immunocytochemical and -histochemical analyses of murine CNS cultures and adult mice intrathecally injected with miRNAs, respectively, were performed to evaluate the impact of miRNA-induced TLR activation on neuronal survival and microglial activation. RESULTS: We identified a specific pattern of miRNAs released from apoptotic cortical neurons that activate TLR7 and/or TLR8, depending on sequence and species. Exposure of microglia and macrophages to certain miRNA classes released from apoptotic neurons resulted in the sequence-specific production of distinct cytokines/chemokines and increased phagocytic activity. Out of those miRNAs miR-100-5p and miR-298-5p, which have consistently been linked to neurodegenerative diseases, entered microglia, located to their endosomes, and directly bound to human TLR8. The miRNA-TLR interaction required novel sequence features, but no specific structure formation of mature miRNA. As a consequence of miR-100-5p- and miR-298-5p-induced TLR activation, cortical neurons underwent cell-autonomous apoptosis. Presence of miR-100-5p and miR-298-5p in cerebrospinal fluid led to neurodegeneration and microglial accumulation in the murine cerebral cortex through TLR7 signaling. CONCLUSION: Our data demonstrate that specific miRNAs are released from apoptotic cortical neurons, serve as endogenous TLR7/8 ligands, and thereby trigger further neuronal apoptosis in the CNS. Our findings underline the recently discovered role of miRNAs as extracellular signaling molecules, particularly in the context of neurodegeneration.


Subject(s)
MicroRNAs , Toll-Like Receptor 7 , Animals , Cerebral Cortex/metabolism , Ligands , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...