Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(42): e2305283120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37819979

ABSTRACT

From flocks of birds to biomolecular assemblies, systems in which many individual components independently consume energy to perform mechanical work exhibit a wide array of striking behaviors. Methods to quantify the dynamics of these so-called active systems generally aim to extract important length or time scales from experimental fields. Because such methods focus on extracting scalar values, they do not wring maximal information from experimental data. We introduce a method to overcome these limitations. We extend the framework of correlation functions by taking into account the internal headings of displacement fields. The functions we construct represent the material response to specific types of active perturbation within the system. Utilizing these response functions we query the material response of disparate active systems composed of actin filaments and myosin motors, from model fluids to living cells. We show we can extract critical length scales from the turbulent flows of an active nematic, anticipate contractility in an active gel, distinguish viscous from viscoelastic dissipation, and even differentiate modes of contractility in living cells. These examples underscore the vast utility of this method which measures response functions from experimental observations of complex active systems.


Subject(s)
Actin Cytoskeleton , Myosins , Actomyosin/physiology
2.
Soft Matter ; 17(22): 5499-5507, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-33989373

ABSTRACT

Cells dynamically control their material properties through remodeling of the actin cytoskeleton, an assembly of cross-linked networks and bundles formed from the biopolymer actin. We recently found that cross-linked networks of actin filaments reconstituted in vitro can exhibit adaptive behavior and thus serve as a model system to understand the underlying mechanisms of mechanical adaptation of the cytoskeleton. In these networks, training, in the form of applied shear stress, can induce asymmetry in the nonlinear elasticity. Here, we explore control over this mechanical hysteresis by tuning the concentration and mechanical properties of cross-linking proteins in both experimental and simulated networks. We find that this effect depends on two conditions: the initial network must exhibit nonlinear strain stiffening, and filaments in the network must be able to reorient during training. Hysteresis depends strongly and non-monotonically on cross-linker concentration, with a peak at moderate concentrations. In contrast, at low concentrations, where the network does not strain stiffen, or at high concentrations, where filaments are less able to rearrange, there is little response to training. Additionally, we investigate the effect of changing cross-linker properties and find that longer or more flexible cross-linkers enhance hysteresis. Remarkably plotting hysteresis against alignment after training yields a single curve regardless of the physical properties or concentration of the cross-linkers.


Subject(s)
Actin Cytoskeleton , Actins , Cytoskeleton , Elasticity , Stress, Mechanical
3.
Soft Matter ; 16(24): 5659-5668, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32519715

ABSTRACT

Macromolecules can phase separate to form liquid condensates, which are emerging as critical compartments in fields as diverse as intracellular organization and soft materials design. A myriad of macromolecules, including the protein FUS, form condensates which behave as isotropic liquids. Here, we investigate the influence of filament dopants on the material properties of protein liquids. We find that the short, biopolymer filaments of actin spontaneously partition into FUS droplets to form composite liquid droplets. As the concentration of the filament dopants increases, the coalescence time decreases, indicating that the dopants control viscosity relative to surface tension. The droplet shape is tunable and ranges from spherical to tactoid as the filament length or concentration is increased. We find that the tactoids are well described by a model of a quasi bipolar liquid crystal droplet, where nematic order from the anisotropic actin filaments competes with isotropic interfacial energy from the FUS, controlling droplet shape in a size-dependent manner. Our results demonstrate a versatile approach to construct tunable, anisotropic macromolecular liquids.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , RNA-Binding Protein FUS/chemistry , Anisotropy , Liquid Crystals , Models, Theoretical , Surface Tension , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...