Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Mil Med ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401164

ABSTRACT

INTRODUCTION: MRI represents one of the clinical tools at the forefront of research efforts aimed at identifying diagnostic and prognostic biomarkers following traumatic brain injury (TBI). Both volumetric and diffusion MRI findings in mild TBI (mTBI) are mixed, making the findings difficult to interpret. As such, additional research is needed to continue to elucidate the relationship between the clinical features of mTBI and quantitative MRI measurements. MATERIAL AND METHODS: Volumetric and diffusion imaging data in a sample of 976 veterans and service members from the Chronic Effects of Neurotrauma Consortium and now the Long-Term Impact of Military-Relevant Brain Injury Consortium observational study of the late effects of mTBI in combat with and without a history of mTBI were examined. A series of regression models with link functions appropriate for the model outcome were used to evaluate the relationships among imaging measures and clinical features of mTBI. Each model included acquisition site, participant sex, and age as covariates. Separate regression models were fit for each region of interest where said region was a predictor. RESULTS: After controlling for multiple comparisons, no significant main effect was noted for comparisons between veterans and service members with and without a history of mTBI. However, blast-related mTBI were associated with volumetric reductions of several subregions of the corpus callosum compared to non-blast-related mTBI. Several volumetric (i.e., hippocampal subfields, etc.) and diffusion (i.e., corona radiata, superior longitudinal fasciculus, etc.) MRI findings were noted to be associated with an increased number of repetitive mTBIs versus. CONCLUSIONS: In deployment-related mTBI, significant findings in this cohort were only observed when considering mTBI sub-groups (blast mechanism and total number/dose). Simply comparing healthy controls and those with a positive mTBI history is likely an oversimplification that may lead to non-significant findings, even in consortium analyses.

2.
Front Neurol ; 14: 1276437, 2023.
Article in English | MEDLINE | ID: mdl-38156092

ABSTRACT

Introduction: The relation between traumatic brain injury (TBI), its acute and chronic symptoms, and the potential for remote neurodegenerative disease is a priority for military research. Structural and functional connectivity (FC) of the basal ganglia, involved in motor tasks such as walking, are altered in some samples of Service Members and Veterans with TBI, but any behavioral implications are unclear and could further depend on the context in which the TBI occurred. Methods: In this study, FC from caudate and pallidum seeds was measured in Service Members and Veterans with a history of mild TBI that occurred during combat deployment, Service Members and Veterans whose mild TBI occurred outside of deployment, and Service Members and Veterans who had no lifetime history of TBI. Results: FC patterns differed for the two contextual types of mild TBI. Service Members and Veterans with deployment-related mild TBI demonstrated increased FC between the right caudate and lateral occipital regions relative to both the non-deployment mild TBI and TBI-negative groups. When evaluating the association between FC from the caudate and gait, the non-deployment mild TBI group showed a significant positive relationship between walking time and FC with the frontal pole, implicated in navigational planning, whereas the deployment-related mild TBI group trended towards a greater negative association between walking time and FC within the occipital lobes, associated with visuo-spatial processing during navigation. Discussion: These findings have implications for elucidating subtle motor disruption in Service Members and Veterans with deployment-related mild TBI. Possible implications for future walking performance are discussed.

3.
Mil Med ; 188(Suppl 6): 124-133, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37948207

ABSTRACT

INTRODUCTION: Because chronic difficulties with cognition and well-being are common after mild traumatic brain injury (mTBI) and aerobic physical activity and exercise (PAE) is a potential treatment and mitigation strategy, we sought to determine their relationship in a large sample with remote mTBI. MATERIALS AND METHODS: The Long-Term Impact of Military-Relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium prospective longitudinal study is a national multicenter observational study of combat-exposed service members and veterans. Study participants with positive mTBI histories (n = 1,087) were classified as "inactive" (23%), "insufficiently active" (46%), "active" (19%), or "highly active" (13%) based on the aerobic PAE level. The design was a cross-sectional analysis with multivariable regression. PAE was reported on the Behavioral Risk Factor Surveillance System. Preselected primary outcomes were seven well-validated cognitive performance tests of executive function, learning, and memory: The California Verbal Learning Test-Second Edition Long-Delay Free Recall and Total Recall, Brief Visuospatial Memory Test-Revised Total Recall, Trail-Making Test-Part B, and NIH Toolbox for the Assessment of Neurological Behavior and Function Cognition Battery Picture Sequence Memory, Flanker, and Dimensional Change Card Sort tests. Preselected secondary outcomes were standardized self-report questionnaires of cognitive functioning, life satisfaction, and well-being. RESULTS: Across the aerobic activity groups, cognitive performance tests were not significantly different. Life satisfaction and overall health status scores were higher for those engaging in regular aerobic activity. Exploratory analyses also showed better working memory and verbal fluency with higher aerobic activity levels. CONCLUSIONS: An association between the aerobic activity level and the preselected primary cognitive performance outcome was not demonstrated using this study sample and methods. However, higher aerobic activity levels were associated with better subjective well-being. This supports a clinical recommendation for regular aerobic exercise among persons with chronic or remote mTBI. Future longitudinal analyses of the exercise-cognition relationship in chronic mTBI populations are recommended.


Subject(s)
Brain Concussion , Veterans , Humans , Brain Concussion/epidemiology , Cross-Sectional Studies , Prospective Studies , Longitudinal Studies , Neuropsychological Tests , Cognition , Veterans/psychology
4.
Neuropsychology ; 37(4): 398-408, 2023 May.
Article in English | MEDLINE | ID: mdl-35797175

ABSTRACT

OBJECTIVE: The variety of instruments used to assess posttraumatic stress disorder (PTSD) allows for flexibility, but also creates challenges for data synthesis. The objective of this work was to use a multisite mega analysis to derive quantitative recommendations for equating scores across measures of PTSD severity. METHOD: Empirical Bayes harmonization and linear models were used to describe and mitigate site and covariate effects. Quadratic models for converting scores across PTSD assessments were constructed using bootstrapping and tested on hold out data. RESULTS: We aggregated 17 data sources and compiled an n = 5,634 sample of individuals who were assessed for PTSD symptoms. We confirmed our hypothesis that harmonization and covariate adjustments would significantly improve inference of scores across instruments. Harmonization significantly reduced cross-dataset variance (28%, p < .001), and models for converting scores across instruments were well fit (median R² = 0.985) with an average root mean squared error of 1.46 on sum scores. CONCLUSIONS: These methods allow PTSD symptom severity to be placed on multiple scales and offers interesting empirical perspectives on the role of harmonization in the behavioral sciences. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/diagnosis , Bayes Theorem , Severity of Illness Index
5.
Hum Brain Mapp ; 44(5): 1888-1900, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36583562

ABSTRACT

Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , White Matter , Humans , Adult , White Matter/pathology , Neuropsychological Tests , Brain Injuries/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain
6.
Neuropsychology ; 37(1): 1-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36174184

ABSTRACT

OBJECTIVE: While outcome from mild traumatic brain injury (mTBI) is generally favorable, concern remains over potential negative long-term effects, including impaired cognition. This study examined the link between cognitive performance and remote mTBIs within the Long-term Impact of Military-relevant Brain Injury Consortium-Chronic Effects of Neurotrauma Consortium (LIMBIC-CENC) multicenter, observational study of Veterans and service members (SMs) with combat exposure. METHOD: Baseline data of the participants passing all cognitive performance validity tests (n = 1,310) were used to conduct a cross-sectional analysis. Using multivariable regression models that adjusted for covariates, including age and estimated preexposure intellectual function, positive mTBI history groups, 1-2 lifetime mTBIs (nonrepetitive, n = 614), and 3 + lifetime mTBIs (repetitive; n = 440) were compared to TBI negative controls (n = 256) on each of the seven cognitive domains computed by averaging Z scores of prespecified component tests. Significance levels were adjusted for multiple comparisons. RESULTS: Neither of the mTBI positive groups differed from the mTBI negative control group on any of the cognitive domains in multivariable analyses. Findings were also consistently negative across sensitivity analyses (e.g., mTBIs as a continuous variable, number of blast-related mTBIs, or years since the first and last mTBI). CONCLUSIONS: Our findings demonstrate that the average veteran or SM who experienced one or more mTBIs does not have postacute objective cognitive deficits due to mTBIs alone. A holistic health care approach including comorbidity assessment is indicated for patients reporting chronic cognitive difficulties after mTBI(s), and strategies for addressing misattribution may be beneficial. Future study is recommended with longitudinal designs to assess within-subjects decline from potential neurodegeneration. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Brain Concussion , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Humans , Brain Concussion/complications , Brain Concussion/psychology , Cross-Sectional Studies , Neuropsychological Tests , Veterans/psychology , Cognition , Stress Disorders, Post-Traumatic/psychology
7.
Neurocase ; 28(6): 459-466, 2022 12.
Article in English | MEDLINE | ID: mdl-36576237

ABSTRACT

Olfactory impairment in military populations is highly prevalent and often attributed to the long-term effects of mild traumatic brain injury (mTBI) and chronic psychiatric disorders. The main goal of this investigation was to examine olfactory function in a cohort of combat veterans using a quantitative smell test.Participants underwent a neurological examination, completed performance validity testing (PVT), provided deployment history, and their medical records were reviewed.Participants were 38 veterans with a deployment-related mTBI who passed the PVT and did not have ongoing substance misuse issues. Olfactory examination revealed normosmia in 20 participants and various degrees of deficit in 18. The groups did not differ in demographics, post-injury interval, or current clinical (non-psychiatric) conditions. Participants with hyposmia frequently reported being exposed to a higher number of blasts and being positioned closer to the nearest primary blast, and more often endorsed a period of loss of consciousness after the most serious mTBI. In addition, they more often reported tympanic membrane perforation, extracranial injuries, and histories of both blast and blunt force mTBI. Comorbid diagnoses of posttraumatic stress disorder, depression, chronic headaches, and pain were more common among them as well.Several blast exposure and injury-related characteristics increase the likelihood of long-term olfactory impartments, comorbid psychiatric conditions, and chronic pain among veterans with history of deployment-related mTBI. Notably, none of the participants with hyposmia had a clinical diagnosis of olfactory dysfunction or were receiving service-connected disability for loss of sense of smell at the time of their assessment.


Subject(s)
Brain Concussion , Stress Disorders, Post-Traumatic , Veterans , Humans , Veterans/psychology , Pilot Projects , Anosmia , Stress Disorders, Post-Traumatic/psychology
8.
Brain Inj ; 36(5): 662-672, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35125044

ABSTRACT

OBJECTIVE: To determine if history of mild traumatic brain injury (mTBI) is associated with advanced or accelerated brain aging among the United States (US) military Service Members and Veterans. METHODS: Eight hundred and twenty-two participants (mean age = 40.4 years, 714 male/108 female) underwent MRI sessions at eight sites across the US. Two hundred and one participants completed a follow-up scan between five months and four years later. Predicted brain ages were calculated using T1-weighted MRIs and then compared with chronological ages to generate an Age Deviation Score for cross-sectional analyses and an Interval Deviation Score for longitudinal analyses. Participants also completed a neuropsychological battery, including measures of both cognitive functioning and psychological health. RESULT: In cross-sectional analyses, males with a history of deployment-related mTBI showed advanced brain age compared to those without (t(884) = 2.1, p = .038), while this association was not significant in females. In follow-up analyses of the male participants, severity of posttraumatic stress disorder (PTSD), depression symptoms, and alcohol misuse were also associated with advanced brain age. CONCLUSION: History of deployment-related mTBI, severity of PTSD and depression symptoms, and alcohol misuse are associated with advanced brain aging in male US military Service Members and Veterans.


Subject(s)
Alcoholism , Brain Concussion , Brain Injuries, Traumatic , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Adult , Brain , Brain Concussion/psychology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Male , Military Personnel/psychology , Neuroimaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/etiology , United States , Veterans/psychology
9.
Neurocase ; 27(6): 457-461, 2021 12.
Article in English | MEDLINE | ID: mdl-34783300

ABSTRACT

Thorough identification of risk factors for delayed decline in cognitive performance following combat-related mild traumatic brain injury (mTBI) is important for guiding comprehensive post-deployment rehabilitation. In a sample of veterans who reported at least one deployment-related mTBI, preliminary results indicate that factors including a history of loss of consciousness over 1 min, current obesity and hypertension, and Black race were more prevalent in those with decreased scores on a measure of memory function. These factors should be considered by clinicians and researchers working with current and former military personnel.


Subject(s)
Brain Concussion , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Brain Concussion/complications , Cognition , Humans , Military Personnel/psychology , Risk Factors , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/etiology , Stress Disorders, Post-Traumatic/psychology , Veterans/psychology
10.
Brain Imaging Behav ; 15(2): 585-613, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33409819

ABSTRACT

Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.


Subject(s)
Brain Injuries, Traumatic , Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Brain Injuries, Traumatic/diagnostic imaging , Humans , Magnetic Resonance Imaging
11.
Mil Psychol ; 33(6): 426-435, 2021.
Article in English | MEDLINE | ID: mdl-38536382

ABSTRACT

Problems with social functioning are common following combat deployment, and these may be greater among individuals with a history of traumatic brain injury (TBI). The present investigation examined the impact of mild TBI (mTBI), deployment-related characteristics, and resilience on perceived participation limitations among combat Veterans. This was a cross-sectional study of 143 participants with a history of at least one deployment-related mTBI (TBI group) and 80 without a history of lifetime TBI (Comparison group). Self-report measures of participation, resilience, posttraumatic stress disorder (PTSD) symptoms, and combat exposure were administered. In addition, each participant completed a structured interview to assess lifetime TBI history. The groups did not differ in basic demographics, but significant differences were found for perceived limitations in participation, the presence of PTSD symptoms, and intensity of combat exposure. A stepwise model indicated a significant effect of resilience on reported limitations in participation (adjusted R2 = 0.61). Individuals with higher resiliency reported a higher degree of social participation, and this effect was stronger in the TBI group. Deployment-related characteristics, including intensity of combat exposure, did not have a significant effect (adjusted R2 = 0.28) on social participation. The role of resilience should be recognized within post-deployment transition and rehabilitation programs.

12.
Brain Imaging Behav ; 14(5): 1318-1327, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30511116

ABSTRACT

Automated neuroimaging methods like FreeSurfer ( https://surfer.nmr.mgh.harvard.edu/ ) have revolutionized quantitative neuroimaging analyses. Such analyses provide a variety of metrics used for image quantification, including magnetic resonance imaging (MRI) volumetrics. With the release of FreeSurfer version 6.0, it is important to assess its comparability to the widely-used previous version 5.3. The current study used data from the initial 249 participants in the ongoing Chronic Effects of Neurotrauma Consortium (CENC) multicenter observational study to compare the volumetric output of versions 5.3 and 6.0 across various regions of interest (ROI). In the current investigation, the following ROIs were examined: total intracranial volume, total white matter volume, total ventricular volume, total gray matter volume, and right and left volumes for the thalamus, pallidum, putamen, caudate, amygdala and hippocampus. Absolute ROI volumes derived from FreeSurfer 6.0 differed significantly from those obtained using version 5.3. We also employed a clinically-based evaluation strategy to compare both versions in their prediction of age-mediated volume reductions (or ventricular increase) in the aforementioned structures. Statistical comparison involved both general linear modeling (GLM) and random forest (RF) methods, where cross-validation error was significantly higher using segmentations from FreeSurfer version 5.3 versus version 6.0 (GLM: t = 4.97, df = 99, p value = 2.706e-06; RF: t = 4.85, df = 99, p value = 4.424e-06). Additionally, the relative importance of ROIs used to predict age using RFs differed between FreeSurfer versions, indicating substantial differences in the two versions. However, from the perspective of correlational analyses, fitted regression lines and their slopes were similar between the two versions, regardless of version used. While absolute volumes are not interchangeable between version 5.3 and 6.0, ROI correlational analyses appear to yield similar results, suggesting the interchangeability of ROI volume for correlational studies.


Subject(s)
Magnetic Resonance Imaging , White Matter , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Hippocampus , Humans , Image Processing, Computer-Assisted , Neuroimaging , White Matter/diagnostic imaging
13.
Front Neurol ; 10: 925, 2019.
Article in English | MEDLINE | ID: mdl-31572283

ABSTRACT

Positive effects of methylphenidate (MPH) on attention and cognitive processing speed have been reported in studies of patients with moderate to severe traumatic brain injury (TBI). Studies which have acquired functional brain imaging before and while using MPH have also found alteration of brain activation while performing a cognitive task; in some studies, this alteration of activation in selective brain regions was also related to improved performance on cognitive tests administered outside of the scanning environment. Enhanced cognitive performance has been reported after single doses of MPH and after daily treatment over durations of up to and exceeding 1 month. Preclinical research and both positron emission tomography and single photon emission tomography of humans have shown that MPH increases extracellular dopamine and norepinephrine; the dose effects of MPH have an inverted U-shaped function where high doses may cause insomnia, nervousness, and increased heart rate among other symptoms and impair cognitive performance, whereas too low a dose fails to improve cognitive performance. In the past 5 years, small clinical trials, and experimental pilot studies have found therapeutic effects of single and repeated low doses of MPH in patients with mild TBI who reported cognitive dysfunction. This literature also suggests that MPH may interact with concurrent cognitive interventions to enhance their effects. This focused review will critically evaluate the recent literature on MPH effects on cognitive dysfunction after mild to moderate TBI. To elucidate the neural mechanisms of MPH effects, this review will also include recent imaging research, preclinical, and experimental human studies.

14.
Int J Methods Psychiatr Res ; 28(3): e1781, 2019 09.
Article in English | MEDLINE | ID: mdl-31608535

ABSTRACT

OBJECTIVES: The chronic effects of neurotrauma consortium (CENC) observational study is a multisite investigation designed to examine the long-term longitudinal effects of mild traumatic brain injury (mTBI). All participants in this initial CENC cohort had a history of deployment in Operation Enduring Freedom (Afghanistan), Operation Iraqi Freedom (Iraq), and/or their follow-on conflicts (Operation Freedom's Sentinel). All participants undergo extensive medical, neuropsychological, and neuroimaging assessments and either meet criteria for any lifetime mTBI or not. These assessments are integrated into six CENC core studies-Biorepository, Biostatistics, Data and Study Management, Neuroimaging, and Neuropathology. METHODS: The current study outlines the quantitative neuroimaging methods managed by the Neuroimaging Core using FreeSurfer automated software for image quantification. RESULTS: At this writing, 319 participants from the CENC observational study have completed all baseline assessments including the imaging protocol and tertiary data quality assurance procedures. CONCLUSIONS/DISCUSSION: The preliminary findings of this initial cohort are reported to describe how the Neuroimaging Core manages neuroimaging quantification for CENC studies.


Subject(s)
Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Neuroimaging , Adult , Chronic Disease , Cohort Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged
15.
Brain Inj ; 32(10): 1236-1244, 2018.
Article in English | MEDLINE | ID: mdl-30047797

ABSTRACT

OBJECTIVES: Investigate the relation of chronic pain interference to functional connectivity (FC) of brain regions and to cortical thickness in post-911 Veterans and Service Members (SMs) who sustained a mild traumatic brain injury (mTBI). METHODS: This is an observational study with cross-sectional analyses. A sample of 65 enrollees completing initial evaluation at a single site of the Chronic Effects of Neurotrauma Consortium (CENC) reported pain interference ratings on the TBI QOL. Functional connectivity and cortical thickness were measured. RESULTS: Severity of pain interference was negatively related to FC of the default mode network (DMN), i.e., participants who reported more severe pain interference had less FC between mesial prefrontal cortex and posterior regions of the DMN including posterior cingulate cortex and precuneus. Cortical thickness of specific regions was positively related to severity of pain interference. CONCLUSION: The more that pain was perceived to interfere with daily life, the less the FC between regions in a network associated with self-referential thought and mind wandering. Although cortical thickness in specific brain regions was positively related to severity of pain interference, follow-up longitudinal data, control group data, and study of individual differences in this cohort will expand this initial report and replicate these findings.


Subject(s)
Cerebral Cortex/diagnostic imaging , Chronic Pain/diagnostic imaging , Chronic Pain/etiology , Neural Pathways/diagnostic imaging , Stress Disorders, Post-Traumatic/complications , Stress Disorders, Post-Traumatic/diagnostic imaging , Adult , Afghan Campaign 2001- , Cross-Sectional Studies , Female , Humans , Image Processing, Computer-Assisted , Iraq War, 2003-2011 , Magnetic Resonance Imaging/methods , Male , Middle Aged , Oxygen/blood , Pain Measurement , Quality of Life , Stress Disorders, Post-Traumatic/psychology , Veterans
16.
Proc IEEE Int Symp Biomed Imaging ; 2018: 1386-1389, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30034577

ABSTRACT

Traumatic brain injury (TBI) is a significant cause of morbidity in military Veterans and Service Members. While most individuals recover fully from mild injuries within weeks, some continue to experience symptoms including headaches, disrupted sleep, and other cognitive, behavioral or physical symptoms. Diffusion magnetic resonance imaging (dMRI) shows promise in identifying areas of structural disruption and predicting outcomes. Although some studies suggest widespread structural disruption after brain injury, dMRI studies of military brain injury have yielded mixed results so far, perhaps due to the subtlety of mild injury, individual differences in injury location, severity and mechanism, and comorbidity with other disorders such as post-traumatic stress disorder (PTSD), depression, and substance abuse. We present preliminary dMRI results from the ENIGMA (Enhancing Neuroimaging Genetics through Meta-Analysis) military brain injury working group. We found higher fractional anisotropy (FA) in participants with a history of TBI. Understanding the injury and recovery process, along with factors that influence these, will lead to improved diagnosis and treatment.

17.
J Neurotrauma ; 35(5): 767-779, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29179667

ABSTRACT

Traumatic brain injury (TBI) disrupts brain communication and increases risk for post-traumatic stress disorder (PTSD). However, mechanisms by which TBI-related disruption of brain communication confers PTSD risk have not been successfully elucidated in humans. This may be in part because functional MRI (fMRI), the most common technique for measuring functional brain communication, is unreliable for characterizing individual patients. However, this unreliability can be overcome with sufficient within-individual data. Here, we examined whether relationships could be observed among TBI, structural and functional brain connectivity, and PTSD severity by collecting ∼3.5 hours of resting-state fMRI and diffusion tensor imaging (DTI) data in each of 26 United States military veterans. We observed that a TBI history was associated with decreased whole-brain resting-state functional connectivity (RSFC), while the number of lifetime TBIs was associated with reduced whole-brain fractional anisotropy (FA). Both RSFC and FA explained independent variance in PTSD severity, with RSFC mediating the TBI-PTSD relationship. Finally, we showed that large amounts of per-individual data produced highly reliable RSFC measures, and that relationships among TBI, RSFC/FA, and PTSD could not be observed with typical data quantities. These results demonstrate links among TBI, brain connectivity, and PTSD severity, and illustrate the need for precise characterization of individual patients using high-data fMRI scanning.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Neuroimaging/methods , Stress Disorders, Post-Traumatic/diagnostic imaging , White Matter/diagnostic imaging , Adult , Brain Injuries, Traumatic/physiopathology , Diffusion Tensor Imaging/methods , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Stress Disorders, Post-Traumatic/physiopathology , Veterans , White Matter/physiopathology
18.
Front Neurol ; 8: 352, 2017.
Article in English | MEDLINE | ID: mdl-28824524

ABSTRACT

Novel and non-routine tasks often require information processing and behavior to adapt from moment to moment depending on task requirements and current performance. This ability to adapt is an executive function that is referred to as cognitive control. Patients with moderate-to-severe traumatic brain injury (TBI) have been reported to exhibit impairments in cognitive control and functional magnetic resonance imaging (fMRI) has provided evidence for TBI-related alterations in brain activation using various fMRI cognitive control paradigms. There is some support for greater and more extensive cognitive control-related brain activation in patients with moderate-to-severe TBI, relative to comparison subjects without TBI. In addition, some studies have reported a correlation between these activation increases and measures of injury severity. Explanations that have been proposed for increased activation within structures that are thought to be directly involved in cognitive control, as well as the extension of this over-activation into other brain structures, have included compensatory mechanisms, increased demand upon normal processes required to maintain adequate performance, less efficient utilization of neural resources, and greater vulnerability to cognitive fatigue. Recent findings are also consistent with the possibility that activation increases within some structures, such as the posterior cingulate gyrus, may reflect a failure to deactivate components of the default mode network (DMN) and that some cognitive control impairment may result from ineffective coordination between the DMN and components of the salience network. Functional neuroimaging studies examining cognitive control-related activation following mild TBI (mTBI) have yielded more variable results, with reports of increases, decreases, and no significant change. These discrepancies may reflect differences among the various mTBI samples under study, recovery of function in some patients, different task characteristics, and the presence of comorbid conditions such as depression and posttraumatic stress disorder that also alter brain activation. There may be mTBI populations with activation changes that overlap with those found following more severe injuries, including symptomatic mTBI patients and those with acute injuries, but future research to address such dysfunction will require well-defined samples with adequate controls for injury characteristics, comorbid disorders, and severity of post-concussive symptoms.

19.
Brain Inj ; 30(12): 1458-1468, 2016.
Article in English | MEDLINE | ID: mdl-27834541

ABSTRACT

BACKGROUND: White matter hyperintensities (WMHs) are foci of abnormal signal intensity in white matter regions seen with magnetic resonance imaging (MRI). WMHs are associated with normal ageing and have shown prognostic value in neurological conditions such as traumatic brain injury (TBI). The impracticality of manually quantifying these lesions limits their clinical utility and motivates the utilization of machine learning techniques for automated segmentation workflows. METHODS: This study develops a concatenated random forest framework with image features for segmenting WMHs in a TBI cohort. The framework is built upon the Advanced Normalization Tools (ANTs) and ANTsR toolkits. MR (3D FLAIR, T2- and T1-weighted) images from 24 service members and veterans scanned in the Chronic Effects of Neurotrauma Consortium's (CENC) observational study were acquired. Manual annotations were employed for both training and evaluation using a leave-one-out strategy. Performance measures include sensitivity, positive predictive value, [Formula: see text] score and relative volume difference. RESULTS: Final average results were: sensitivity = 0.68 ± 0.38, positive predictive value = 0.51 ± 0.40, [Formula: see text] = 0.52 ± 0.36, relative volume difference = 43 ± 26%. In addition, three lesion size ranges are selected to illustrate the variation in performance with lesion size. CONCLUSION: Paired with correlative outcome data, supervised learning methods may allow for identification of imaging features predictive of diagnosis and prognosis in individual TBI patients.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Electronic Data Processing , Supervised Machine Learning , White Matter/diagnostic imaging , Adolescent , Adult , Brain Mapping , Cohort Studies , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...