Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 101(21): e2078-e2093, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37914414

ABSTRACT

BACKGROUND AND OBJECTIVES: Advanced therapies (ATs; deep brain stimulation [DBS] or pump therapies: continuous subcutaneous apomorphine infusion [CSAI], levodopa/carbidopa intestinal gel [LCIG]) are used in later stages of Parkinson disease (PD). However, decreasing efficacy over time and/or side effects may require an AT change or combination in individual patients. Current knowledge about changing or combining ATs is limited to mostly retrospective and small-scale studies. The nationwide case collection Combinations of Advanced Therapies in PD assessed simultaneous or sequential AT combinations in Germany since 2005 to analyze their clinical outcome, their side effects, and the reasons for AT modifications. METHODS: Data were acquired retrospectively by modular questionnaires in 22 PD centers throughout Germany based on clinical records and comprised general information about the centers/patients, clinical (Mini-Mental Status Test/Montréal Cognitive Assessment, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale [MDS-UPDRS], side effects, reasons for AT modification), and therapeutical (ATs with specifications, oral medication) data. Data assessment started with initiation of the second AT. RESULTS: A total of 148 AT modifications in 116 patients were associated with significantly improved objective (median decrease of MDS-UPDRS Part III 4.0 points [p < 0.001], of MDS-UPDRS Part IV 6.0 points [p < 0.001], of MDS-UPDRS Part IV-off-time item 1.0 points [p < 0.001]) and subjective clinical outcome and decreasing side effect rates. Main reasons for an AT modification were insufficient symptom control and side effects of the previous therapy. Subgroup analyses suggest addition of DBS in AT patients with leading dyskinesia, addition of LCIG for leading other cardinal motor symptoms, and addition of LCIG or CSAI for dominant off-time. The most long-lasting therapy-until requiring a modification-was DBS. DISCUSSION: Changing or combining ATs may be beneficial when 1 AT is insufficient in efficacy or side effects. The outcome of an AT combination is comparable with the clinical benefit by introducing the first AT. The added AT should be chosen dependent on dominant clinical symptoms and adverse effects. Furthermore, prospective trials are needed to confirm the results of this exploratory case collection. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that, in patients with PD, changing or combining ATs is associated with an improvement in the MDS-UPDRS or subjective symptom reporting.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/psychology , Antiparkinson Agents/therapeutic use , Retrospective Studies , Prospective Studies , Carbidopa/therapeutic use , Levodopa/therapeutic use , Infusions, Subcutaneous , Drug Combinations , Gels/therapeutic use
2.
Mov Disord ; 38(5): 894-899, 2023 05.
Article in English | MEDLINE | ID: mdl-36807626

ABSTRACT

BACKGROUND: Pallidal deep brain stimulation (DBS) effectively alleviates symptoms in dystonia patients, but may induce movement slowness as a side-effect. In Parkinson's disease, hypokinetic symptoms have been associated with increased beta oscillations (13-30 Hz). We hypothesize that this pattern is symptom-specific, thus accompanying DBS-induced slowness in dystonia. METHODS: In 6 dystonia patients, pallidal rest recordings with a sensing-enabled DBS device were performed and tapping speed was assessed using marker-less pose estimation over 5 time points following cessation of DBS. RESULTS: After cessation of pallidal stimulation, movement speed increased over time (P < 0.01). A linear mixed-effects model revealed that pallidal beta activity explained 77% of the variance in movement speed across patients (P = 0.01). CONCLUSIONS: The association between beta oscillations and slowness across disease entities provides further evidence for symptom-specific oscillatory patterns in the motor circuit. Our findings might help DBS therapy improvements, as DBS-devices able to adapt to beta oscillations are already commercially available. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Parkinson Disease , Humans , Dystonia/therapy , Globus Pallidus/physiology , Dystonic Disorders/therapy , Parkinson Disease/therapy , Treatment Outcome
3.
Neuroimage ; 262: 119552, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35981644

ABSTRACT

Lead-DBS is an open-source, semi-automatized and widely applied software tool facilitating precise localization of deep brain stimulation electrodes both in native as well as in standardized stereotactic space. While automatized preprocessing steps within the toolbox have been tested and validated in previous studies, the interrater reliability in manual refinements of electrode localizations using the tool has not been objectified so far. Here, we investigate the variance introduced in this processing step by different raters when localizing electrodes based on postoperative CT or MRI. Furthermore, we compare the performance of novel trainees that received a structured training and more experienced raters with an expert user. We show that all users yield similar results with an average difference in localizations ranging between 0.52-0.75 mm with 0.07-0.12 mm increases in variability when using postoperative MRI and following normalization to standard space. Our findings may pave the way toward formal training for using Lead-DBS and demonstrate its reliability and ease-of-use for imaging research in the field of deep brain stimulation.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Deep Brain Stimulation/methods , Electrodes, Implanted , Humans , Magnetic Resonance Imaging/methods , Parkinson Disease/therapy , Reproducibility of Results , Subthalamic Nucleus/physiology
4.
Mov Disord ; 34(11): 1734-1739, 2019 11.
Article in English | MEDLINE | ID: mdl-31483903

ABSTRACT

OBJECTIVE: This study investigates the association between pallidal low-frequency activity and motor sign severity in dystonia after chronic deep brain stimulation for several months. METHODS: Local field potentials were recorded in 9 dystonia patients at 5 timepoints (T1-T5) during an OFF-stimulation period of 5 to 7 hours in parallel with clinical assessment using Burke-Fahn-Marsden Dystonia Rating Scale. A linear mixed effects model was used to investigate the potential association of motor signs with local field potential activity in the low frequency (3-12 Hz) and beta range (13-30 Hz). RESULTS: A significant association of Burke-Fahn-Marsden Dystonia Rating Scale scores with low-frequency activity (3-12 Hz; b = 4.4; standard error = 1.5, degrees of freedom = 43, P = 0.006, 95% confidence interval, 1.3-7.5), but not beta activity (13-30 Hz) was revealed within participants across timepoints. CONCLUSION: Low-frequency activity is associated with dystonic motor sign severity, even months after chronic deep brain stimulation. Our findings corroborate the pathophysiological role of low-frequency activity in dystonia and highlight the potential utility as a biomarker for adaptive neuromodulation. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Brain , Deep Brain Stimulation , Dystonia/therapy , Movement Disorders/therapy , Adult , Dystonia/physiopathology , Female , Humans , Male , Middle Aged , Movement Disorders/physiopathology , Severity of Illness Index , Time , Treatment Outcome
5.
BMC Med Genomics ; 11(1): 41, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29685133

ABSTRACT

BACKGROUND: Decapping of mRNA is an important step in the regulation of mRNA turnover and therefore of gene expression, which is a key process controlling development and homeostasis of all organisms. It has been shown that EDC3 plays a role in mRNA decapping, however its function is not well understood. Previously, we have associated a homozygous variant in EDC3 with autosomal recessive intellectual disability. Here, we investigate the functional role of EDC3. METHODS: We performed transcriptome analyses in patients' samples. In addition, we established an EDC3 loss-of-function model using siRNA-based knockdown in the human neuroblastoma cell line SKNBE and carried out RNA sequencing. Integrative bioinformatics analyses were performed to identify EDC3-dependent candidate genes and/or pathways. RESULTS: Our analyses revealed that 235 genes were differentially expressed in patients versus controls. In addition, AU-rich element (ARE)-containing mRNAs, whose degradation in humans has been suggested to involve EDC3, had higher fold changes than non-ARE-containing genes. The analysis of RNA sequencing data from the EDC3 in vitro loss-of-function model confirmed the higher fold changes of ARE-containing mRNAs compared to non-ARE-containing mRNAs and further showed an upregulation of long non-coding and coding RNAs. In total, 764 genes were differentially expressed. Integrative bioinformatics analyses of these genes identified dysregulated candidate pathways, including pathways related to synapses/coated vesicles and DNA replication/cell cycle. CONCLUSION: Our data support the involvement of EDC3 in mRNA decay, including ARE-containing mRNAs, and suggest that EDC3 might be preferentially involved in the degradation of long coding and non-coding RNAs. Furthermore, our results associate ECD3 loss-of-function with synapses-related pathways. Collectively, our data provide novel information that might help elucidate the molecular mechanisms underlying the association of intellectual disability with the dysregulation of mRNA degradation.


Subject(s)
Computational Biology , Intellectual Disability/metabolism , RNA Stability , Ribonucleoproteins, Small Nuclear/metabolism , Down-Regulation , GC Rich Sequence , Gene Knockdown Techniques , Gene Regulatory Networks , Humans , Intellectual Disability/genetics , RNA, Long Noncoding/genetics , Ribonucleoproteins, Small Nuclear/deficiency , Ribonucleoproteins, Small Nuclear/genetics , Synapses/metabolism
6.
JAMA Psychiatry ; 74(3): 293-299, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28097321

ABSTRACT

Importance: Autosomal recessive inherited neurodevelopmental disorders are highly heterogeneous, and many, possibly most, of the disease genes are still unknown. Objectives: To promote the identification of disease genes through confirmation of previously described genes and presentation of novel candidates and provide an overview of the diagnostic yield of exome sequencing in consanguineous families. Design, Setting, and Participants: Autozygosity mapping in families and exome sequencing of index patients were performed in 152 consanguineous families (the parents descended from a same ancestor) with at least 1 offspring with intellectual disability (ID). The study was conducted from July 1, 2008, to June 30, 2015, and data analysis was conducted from July 1, 2015, to August 31, 2016. Results: Of the 152 consanguineous families enrolled, 1 child (in 45 families [29.6%]) or multiple children (107 families [70.4%]) had ID; additional features were present in 140 of the families (92.1%). The mean (SD) age of the children was 10.3 (9.0) years, and 171 of 297 (57.6%) were male. In 109 families (71.7%), potentially protein-disrupting and clinically relevant variants were identified. Of these, a clear clinical genetic diagnosis was made in 56 families (36.8%) owing to 57 (likely) pathogenic variants in 50 genes already established in neurodevelopmental disorders (46 autosomal recessive, 2 X-linked, and 2 de novo) or in 7 previously proposed recessive candidates. In 5 of these families, potentially treatable disorders were diagnosed (mutations in PAH, CBS, MTHFR, CYP27A1, and HIBCH), and in 1 family, 2 disease-causing homozygous variants in different genes were identified. In another 48 families (31.6%), 52 convincing recessive variants in candidate genes that were not previously reported in regard to neurodevelopmental disorders were identified. Of these, 14 were homozygous and truncating in GRM7, STX1A, CCAR2, EEF1D, GALNT2, SLC44A1, LRRIQ3, AMZ2, CLMN, SEC23IP, INIP, NARG2, FAM234B, and TRAP1. The diagnostic yield was higher in individuals with severe ID (35 of 77 [45.5%]), in multiplex families (42 of 107 [39.3%]), in patients with additional features (30 of 70 [42.9%]), and in those with remotely related parents (15 of 34 [44.1%]). Conclusions and Relevance: Because of the high diagnostic yield of 36.8% and the possibility of identifying treatable diseases or the coexistence of several disease-causing variants, using exome sequencing as a first-line diagnostic approach in consanguineous families with neurodevelopmental disorders is recommended. Furthermore, the literature is enriched with 52 convincing candidate genes that are awaiting confirmation in independent families.


Subject(s)
Consanguinity , Exome/genetics , Genes, Recessive/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Neurodevelopmental Disorders/genetics , Sequence Analysis, DNA , Child , Chromosome Aberrations , DNA Mutational Analysis , Female , Germany , Homozygote , Humans , Male
7.
Hum Mol Genet ; 24(11): 3172-80, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25701870

ABSTRACT

There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects.


Subject(s)
Endoribonucleases/genetics , Intellectual Disability/genetics , Ribonucleoproteins, Small Nuclear/genetics , Adolescent , Child , Consanguinity , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Female , Genes, Recessive , Genetic Association Studies , Humans , Male , Mutation, Missense , Pedigree , Point Mutation , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Processing, Post-Transcriptional , RNA Splice Sites , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...