Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069540

ABSTRACT

Enrofloxacin is frequently administered via drinking water for the treatment of colibacillosis in broiler chickens. However, the EMA/CVMP has urged to re-evaluate historically approved doses, especially for antimicrobials administered via drinking water. In response, the objectives of this study were two-fold. First, to evaluate the pharmacokinetics (PK) of enrofloxacin following IV, PO and drinking water administration. Second, to predict the efficacy of a range of doses in the drinking water for the treatment of APEC infections. For the first objective, PK parameters were estimated by fitting a one-compartmental model with a zero-order IV infusion and an oral absorption lag function to the simultaneously modelled IV and PO data. After fixing these parameter values, a drinking behaviour pharmacokinetic (DBPK) model was developed for the description and prediction of drinking water PK profiles by adding three model improvements (different diurnal and nocturnal drinking rates, inter-animal variability in water consumption and taking account of dose non-proportionality). The subsequent simulations and probability of target attainment (PTA) analysis predicted that a dose of 12.5 mg/kg/24 h is efficacious in treating colibacillosis with an MIC up to 0.125 µg/mL (ECOFF), whereas the currently registered dose (10 mg/kg/24 h) reaches a PTA of 66% at ECOFF.

2.
Front Pharmacol ; 12: 665644, 2021.
Article in English | MEDLINE | ID: mdl-33935788

ABSTRACT

The Göttingen Minipig is gaining ground as nonrodent species in safety testing of drugs for pediatric indications. Due to developmental changes in pharmacokinetics and pharmacodynamics, physiologically based pharmacokinetic (PBPK) models are built to better predict drug exposure in children and to aid species selection for nonclinical safety studies. These PBPK models require high quality physiological and ADME data such as protein abundance of drug metabolizing enzymes. These data are available for man and rat, but scarce for the Göttingen Minipig. The aim of this study was to assess hepatic cytochrome P450 (CYP) protein abundance in the developing Göttingen Minipig by using mass spectrometry. In addition, sex-related differences in CYP protein abundance and correlation of CYP enzyme activity with CYP protein abundance were assessed. The following age groups were included: gestational day (GD) 84-86 (n = 8), GD 108 (n = 6), postnatal day (PND) 1 (n = 8), PND 3 (n = 8), PND 7 (n = 8), PND 28 (n = 8) and adult (n = 8). Liver microsomes were extracted and protein abundance was compared to that in adult animals. Next, the CYP protein abundance was correlated to CYP enzyme activity in the same biological samples. In general, CYP protein abundance gradually increased during development. However, we observed a stable protein expression over time for CYP4A24 and CYP20A1 and for CYP51A1, a high protein expression during the fetal stages was followed by a decrease during the first month of life and an increase toward adulthood. Sex-related differences were observed for CYP4V2_2a and CYP20A1 at PND 1 with highest expression in females for both isoforms. In the adult samples, sex-related differences were detected for CYP1A1, CYP1A2, CYP2A19, CYP2E1_2, CYP3A22, CYP4V2_2a and CYP4V2_2b with higher values in female compared to male Göttingen Minipigs. The correlation analysis between CYP protein abundance and CYP enzyme activity showed that CYP3A22 protein abundance correlated clearly with the metabolism of midazolam at PND 7. These data are remarkably comparable to human data and provide a valuable step forward in the construction of a neonatal and juvenile Göttingen Minipig PBPK model.

3.
Food Chem Toxicol ; 137: 111140, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32004578

ABSTRACT

Mycotoxins frequently contaminate food and feed materials, posing a threat to human and animal health. Fusarium species produce important mycotoxins with regard to their occurrence and toxicity, especially deoxynivalenol (DON), fumonisin B1 (FB1), zearalenone (ZEN) and T-2 toxin (T-2). The susceptibility of an animal species towards the effects of these toxins in part depends on the absorption, distribution, metabolism and excretion (ADME processes) of these toxins from the body. For humans, in vivo information is scarce and often animal data is used for extrapolation to humans. From a kinetic and safety point of view, the pig seems to be a promising animal model to aid in the assessment of the toxicological risk of mycotoxins to humans. Qualitatively, the ADME processes seem to be quite similar between pigs and humans. In addition, similar metabolite and excretion patterns are observed, although some quantitative differences are noticed which are subject of this review. The high sensitivity of pigs towards mycotoxins and the similar kinetics are an advantage for the use of this animal species in the risk assessment of mycotoxins, and for the establishment of legal limits of mycotoxins.


Subject(s)
Fusarium/chemistry , Mycotoxins/metabolism , Mycotoxins/pharmacokinetics , Animals , Cell Line, Tumor , Glucuronates/metabolism , Humans , Microsomes, Liver/metabolism , Swine
4.
Sci Rep ; 9(1): 9233, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239454

ABSTRACT

Over the past two decades, the pig has gained attention as a potential model for human drug metabolism. Cytochrome P450 enzymes (CYP450), a superfamily of biotransformation enzymes, are pivotal in drug metabolism. Porcine CYP450 has been demonstrated to convert typical substrates of human CYP450. Nevertheless, knowledge and insight into porcine CYP450 quantity and substrate selectivity is scant, especially regarding intestinal CYP450. The current study aimed to map the quantities of hepatic and intestinal CYP450 in the conventional pig by using a proteomic approach. Moreover, the selectivity of the six most common used probe substrates (phenacetin, coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) for drug metabolizing enzyme subfamilies (CYP1A, CYP2A, CYP3A, CYP2C, CYP2D and CYP2E respectively), was investigated. Hepatic relative quantities were 4% (CYP1A), 31% (CYP2A), 14% (CYP3A), 10% (CYP2C), 28% (CYP2D) and 13% (CYP2E), whereas for the intestine only duodenal CYP450 could be determined with 88% for CYP3A and 12% for CYP2C. Furthermore, the results indicate that coumarin (CYP2A), midazolam (CYP3A), tolbutamide (CYP2C), and dextromethorphan (CYP2D) are as selective for porcine as for human CYP450. However, phenacetin (CYP1A2) and chlorzoxazone (CYP2E1) are less selective for the specific enzyme, despite similarities in selectivity towards the different enzymes involved compared to humans.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Intestines/enzymology , Liver/enzymology , Pharmaceutical Preparations/metabolism , Sequence Homology, Amino Acid , Animals , Humans , Inactivation, Metabolic , Proteomics , Species Specificity , Substrate Specificity , Swine
5.
Front Pharmacol ; 10: 399, 2019.
Article in English | MEDLINE | ID: mdl-31105561

ABSTRACT

Cytochrome P450 enzymes (CYP) are important catalyzing proteins involved in the biotransformation of endogenous and xenobiotic compounds. However, their expression and/or activity can be altered by exposure to contaminants such as mycotoxins. In vitro incubations in porcine hepatic microsomes revealed a potent inhibition of the midazolam (CYP3A) biotransformation by T-2 toxin (T-2) (Ki = 27.0 ± 3.97 µM) and zearalenone (ZEA) (Ki = 1.1 ± 0.22 µM). Consequently, the in vivo impact of 2 weeks exposure to T-2 (1,000 µg/kg feed) or ZEA (500 µg/kg feed) on the pharmacokinetics (PK) of midazolam (MDZ) as a CYP3A probe drug was investigated in pigs, and was compared to a control group receiving no mycotoxins. MDZ was chosen as this drug undergoes substantial first-pass metabolism in humans with equal contribution of the intestine and liver. Each pig received a single intravenous (0.036 mg/kg BW) and oral (0.15 mg/kg BW) dose of midazolam (MDZ). For the IV bolus no differences were observed in PK between control and mycotoxins exposed groups. However, oral plasma concentration-time profiles showed quantitative differences in absolute oral bioavailability F[p-value (ANOVA) = 0.022], AUC_0-inf (µg∗h/L) [p-value (ANOVA) = 0.023], Ke (1/h) [p-value (ANOVA) = 0.004], and Ka (1/h) [p-value (ANOVA) = 0.031]. Although only differences in Ke estimates after oral administration reached significance in the post hoc analysis due to inequality of the variances. We hypothesize that the observed trends after ZEA and T-2 exposure are related to the cytotoxic effect of T-2, resulting in an increased absorption rate constant Ka. For ZEA, an inhibition of the CYP3A enzymes is suggested based on the in vitro inhibition potential and increase in oral bioavailability. Further research is required to confirm the current hypothesis.

6.
Front Pharmacol ; 9: 470, 2018.
Article in English | MEDLINE | ID: mdl-29867477

ABSTRACT

Since the implementation of several legislations to improve pediatric drug research, more pediatric clinical trials are being performed. In order to optimize these pediatric trials, adequate preclinical data are necessary, which are usually obtained by juvenile animal models. The growing piglet has been increasingly suggested as a potential animal model due to a high degree of anatomical and physiological similarities with humans. However, physiological data in pigs on the ontogeny of major organs involved in absorption, distribution, metabolism, and excretion of drugs are largely lacking. The aim of this study was to unravel the ontogeny of porcine hepatic drug metabolizing cytochrome P450 enzyme (CYP450) activities as well as protein abundances. Liver microsomes from 16 conventional pigs (8 males and 8 females) per age group: 2 days, 4 weeks, 8 weeks, and 6-7 months were prepared. Activity measurements were performed with substrates of major human CYP450 enzymes: midazolam (CYP3A), tolbutamide (CYP2C), and chlorzoxazone (CYP2E). Next, the hepatic scaling factor, microsomal protein per gram liver (MPPGL), was determined to correct for enzyme losses during the fractionation process. Finally, protein abundance was determined using proteomics and correlated with enzyme activity. No significant sex differences within each age category were observed in enzyme activity or MPPGL. The biotransformation rate of all three substrates increased with age, comparable with human maturation of CYP450 enzymes. The MPPGL decreased from birth till 8 weeks of age followed by an increase till 6-7 months of age. Significant sex differences in protein abundance were observed for CYP1A2, CYP2A19, CYP3A22, CYP4V2, CYP2C36, CYP2E_1, and CYP2E_2. Midazolam and tolbutamide are considered good substrates to evaluate porcine CYP3A/2C enzymes, respectively. However, chlorzoxazone is not advised to evaluate porcine CYP2E enzyme activity. The increase in biotransformation rate with age can be attributed to an increase in absolute amount of CYP450 proteins. Finally, developmental changes were observed regarding the involvement of specific CYP450 enzymes in the biotransformation of the different substrates.

7.
Anal Bioanal Chem ; 410(6): 1833-1843, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29327113

ABSTRACT

Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cytochrome P-450 Enzyme System/metabolism , Intestines/enzymology , Microsomes, Liver/enzymology , Pharmaceutical Preparations/metabolism , Tandem Mass Spectrometry/methods , Animals , Cryopreservation , Enzyme Stability , Intestinal Mucosa/metabolism , Microsomes, Liver/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...