Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 892
Filter
1.
Alzheimers Dement ; 20(5): 3429-3441, 2024 May.
Article in English | MEDLINE | ID: mdl-38574374

ABSTRACT

INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-ß (Aß) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aß-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aniline Compounds , Positron-Emission Tomography , Humans , Male , Female , Aged , Amyloid beta-Peptides/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Prognosis , Middle Aged , Longitudinal Studies , Stilbenes , Brain/diagnostic imaging , Brain/metabolism , Benzothiazoles
2.
Psychogeriatrics ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566489

ABSTRACT

BACKGROUND: Patients displaying clinical features of behavioural variant of frontotemporal dementia (bvFTD) but lacking both neuroimaging abnormalities and clinical progression are considered to represent the phenocopy syndrome of bvFTD (phFTD). Extensive clinical overlap between early phase bvFTD and phFTD hampers diagnostic distinction. We aimed to assess the diagnostic value of clinician-rated, self-reported and caregiver-reported symptoms for clinical distinction between phFTD and bvFTD. METHODS: There were 33 phFTD and 95 probable bvFTD patients included in the study (total N = 128). Clinician-rated, self-reported tests and caregiver-reported symptoms were compared between phFTD and bvFTD on social cognition, behaviour, mood and activities of daily living (ADL). Scores were compared between groups, followed by multiple logistic regression analysis, adjusted for age and sex. Receiver operating characteristic curves were plotted to assess diagnostic value. RESULTS: Using clinician-rated and self-reported tests, phFTD patients performed better on facial emotion recognition and reported more depressive symptoms. Caregiver-reported behavioural symptoms indicated higher behavioural and ADL impairment in phFTD compared to bvFTD. Facial emotion recognition provided highest diagnostic accuracy for distinction of phFTD from bvFTD (area under the curve (AUC) 0.813 95% CI 0.735-0.892, P < 0.001, sensitivity 81%, specificity 74%) followed by depressive symptoms (AUC 0.769 95% 0.674-0.864, P < 0.001 sensitivity 81%, specificity of 63%). CONCLUSION: Social cognition tests are most suitable for distinction of phFTD from bvFTD. Caregiver-reported questionnaires and phFTD diagnosis seemed inversely correlated, showing more symptoms in phFTD. Further research is needed on phFTD aetiology and in caregivers taking into account disease burden to assess what explains this discrepancy between clinician-rated and caregiver-based tools.

3.
Alzheimers Res Ther ; 16(1): 93, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678292

ABSTRACT

BACKGROUND: Clinical trials in Alzheimer's disease (AD) had high failure rates for several reasons, including the lack of biological endpoints. Fluid-based biomarkers may present a solution to measure biologically relevant endpoints. It is currently unclear to what extent fluid-based biomarkers are applied to support drug development. METHODS: We systematically reviewed 272 trials (clinicaltrials.gov) with disease-modifying therapies starting between 01-01-2017 and 01-01-2024 and identified which CSF and/or blood-based biomarker endpoints were used per purpose and trial type. RESULTS: We found that 44% (N = 121) of the trials employed fluid-based biomarker endpoints among which the CSF ATN biomarkers (Aß (42/40), p/tTau) were used most frequently. In blood, inflammatory cytokines, NFL, and pTau were most frequently employed. Blood- and CSF-based biomarkers were used approximately equally. Target engagement biomarkers were used in 26% (N = 72) of the trials, mainly in drugs targeting inflammation and amyloid. Lack of target engagement markers is most prominent in synaptic plasticity/neuroprotection, neurotransmitter receptor, vasculature, epigenetic regulators, proteostasis and, gut-brain axis targeting drugs. Positive biomarker results did not always translate to cognitive effects, most commonly the small significant reductions in CSF tau isoforms that were seen following anti-Tau treatments. On the other hand, the positive anti-amyloid trials results on cognitive function were supported by clear effect in most fluid markers. CONCLUSIONS: As the field moves towards primary prevention, we expect an increase in the use of fluid-based biomarkers to determine disease modification. Use of blood-based biomarkers will rapidly increase, but CSF markers remain important to determine brain-specific treatment effects. With improving techniques, new biomarkers can be found to diversify the possibilities in measuring treatment effects and target engagement. It remains important to interpret biomarker results in the context of the trial and be aware of the performance of the biomarker. Diversifying biomarkers could aid in the development of surrogacy biomarkers for different drug targets.


Subject(s)
Alzheimer Disease , Biomarkers , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Humans , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Clinical Trials as Topic/methods , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood
4.
Alzheimers Res Ther ; 16(1): 55, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468313

ABSTRACT

BACKGROUND: Multimer detection system-oligomeric amyloid-ß (MDS-OAß) is a measure of plasma OAß, which is associated with Alzheimer's disease (AD) pathology. However, the relationship between MDS-OAß and disease severity of AD is not clear. We aimed to investigate MDS-OAß levels in different stages of AD and analyze the association between MDS-OAß and cerebral Aß deposition, cognitive function, and cortical thickness in subjects within the AD continuum. METHODS: In this cross-sectional study, we analyzed a total 126 participants who underwent plasma MDS-OAß, structural magnetic resonance image of brain, and neurocognitive measures using Korean version of the Consortium to Establish a Registry for Alzheimer's Disease, and cerebral Aß deposition or amyloid positron emission tomography (A-PET) assessed by [18F] flutemetamol PET. Subjects were divided into 4 groups: N = 39 for normal control (NC), N = 31 for A-PET-negative mild cognitive impairment (MCI) patients, N = 30 for A-PET-positive MCI patients, and N = 22 for AD dementia patients. The severity of cerebral Aß deposition was expressed as standard uptake value ratio (SUVR). RESULTS: Compared to the NC (0.803 ± 0.27), MDS-OAß level was higher in the A-PET-negative MCI group (0.946 ± 0.137) and highest in the A-PET-positive MCI group (1.07 ± 0.17). MDS-OAß level in the AD dementia group was higher than in the NC, but it fell to that of the A-PET-negative MCI group level (0.958 ± 0.103). There were negative associations between MDS-OAß and cognitive function and both global and regional cerebral Aß deposition (SUVR). Cortical thickness of the left fusiform gyrus showed a negative association with MDS-OAß when we excluded the AD dementia group. CONCLUSIONS: These findings suggest that MDS-OAß is not only associated with neurocognitive staging, but also with cerebral Aß burden in patients along the AD continuum.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Cross-Sectional Studies , Amyloid beta-Peptides , Cognitive Dysfunction/pathology , Amyloid , Positron-Emission Tomography/methods , Patient Acuity
5.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Article in English | MEDLINE | ID: mdl-38429551

ABSTRACT

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid
6.
Neurology ; 102(6): e208053, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38377442

ABSTRACT

OBJECTIVES: Higher-educated patients with Alzheimer disease (AD) can harbor greater neuropathologic burden than those with less education despite similar symptom severity. In this study, we assessed whether this observation is also present in potential preclinical AD stages, namely in individuals with subjective cognitive decline and clinical features increasing AD likelihood (SCD+). METHODS: Amyloid-PET information ([18F]Flutemetamol or [18F]Florbetaben) of individuals with SCD+, mild cognitive impairment (MCI), and AD were retrieved from the AMYPAD-DPMS cohort, a multicenter randomized controlled study. Group classification was based on the recommendations by the SCD-I and NIA-AA working groups. Amyloid PET images were acquired within 8 months after initial screening and processed with AMYPYPE. Amyloid load was based on global Centiloid (CL) values. Educational level was indexed by formal schooling and subsequent higher education in years. Using linear regression analysis, the main effect of education on CL values was tested across the entire cohort, followed by the assessment of an education-by-diagnostic-group interaction (covariates: age, sex, and recruiting memory clinic). To account for influences of non-AD pathology and comorbidities concerning the tested amyloid-education association, we compared white matter hyperintensity (WMH) severity, cardiovascular events, depression, and anxiety history between lower-educated and higher-educated groups within each diagnostic category using the Fisher exact test or χ2 test. Education groups were defined using a median split on education (Md = 13 years) in a subsample of the initial cohort, for whom this information was available. RESULTS: Across the cohort of 212 individuals with SCD+ (M(Age) = 69.17 years, F 42.45%), 258 individuals with MCI (M(Age) = 72.93, F 43.80%), and 195 individuals with dementia (M(Age) = 74.07, F 48.72%), no main effect of education (ß = 0.52, 95% CI -0.30 to 1.58), but a significant education-by-group interaction on CL values, was found (p = 0.024) using linear regression modeling. This interaction was driven by a negative association of education and CL values in the SCD+ group (ß = -0.11, 95% CI -4.85 to -0.21) and a positive association in the MCI group (ß = 0.15, 95% CI 0.79-5.22). No education-dependent differences in terms of WMH severity and comorbidities were found in the subsample (100 cases with SCD+, 97 cases with MCI, 72 cases with dementia). DISCUSSION: Education may represent a factor oppositely modulating subjective awareness in preclinical stages and objective severity of ongoing neuropathologic processes in clinical stages.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/epidemiology , Educational Status , Longitudinal Studies , Positron-Emission Tomography , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
7.
Lancet Neurol ; 23(3): 302-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365381

ABSTRACT

The recent commercialisation of the first disease-modifying drugs for Alzheimer's disease emphasises the need for consensus recommendations on the rational use of biomarkers to diagnose people with suspected neurocognitive disorders in memory clinics. Most available recommendations and guidelines are either disease-centred or biomarker-centred. A European multidisciplinary taskforce consisting of 22 experts from 11 European scientific societies set out to define the first patient-centred diagnostic workflow that aims to prioritise testing for available biomarkers in individuals attending memory clinics. After an extensive literature review, we used a Delphi consensus procedure to identify 11 clinical syndromes, based on clinical history and examination, neuropsychology, blood tests, structural imaging, and, in some cases, EEG. We recommend first-line and, if needed, second-line testing for biomarkers according to the patient's clinical profile and the results of previous biomarker findings. This diagnostic workflow will promote consistency in the diagnosis of neurocognitive disorders across European countries.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Europe , Biomarkers , Consensus , Societies, Scientific
8.
Alzheimers Res Ther ; 16(1): 1, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167083

ABSTRACT

BACKGROUND: Apolipoprotein-E (APOE) genetic testing for Alzheimer's disease is becoming more important as clinical trials are increasingly targeting individuals carrying APOE-ε4 alleles. Little is known about the interest in finding out one's genetic risk for Alzheimer's disease in the general population. Our objective was to examine this in a sample of cognitively normal (CN) adults within a population-based online research registry with the goal to implement APOE-ε4 status for trial recruitment. METHODS: An online survey was completed by 442 CN participants between the age of 49 and 75 years (56% female) from the Dutch Brain Research Registry. The survey assessed interest in participation in research into, and disclosure of, genetic risk for dementia. The survey assessed interest in participation in research into, and disclosure of, genetic risk for dementia and knowing their genetic risk in different hypothetical risk scenarios (10%, 30%, and 50% genetic risk for dementia at age 85, corresponding to APOEε2/ε2 or ε2/ε3, APOEε3/ε4 or ε2ε4, and APOE-ε4/ε4 genotypes). Cochran's Q and post hoc McNemar tests were used to analyse differences in frequencies across scenarios. RESULTS: Most participants were interested in participating in research into and disclosure of their genetic risk (81%). The most reported reason was to contribute to scientific research (94%). Interest was higher in males, whilst lower-educated participants were more often undecided. When provided with different risk scenarios, interest in knowing their risk was somewhat higher in the scenarios with higher risk, i.e. in the 50% (79%) compared to the 10% scenario (73%;χ2(2) = 7.98; p = .005). Most individuals expected they would share their genetic risk with close relatives (77-89%), would participate in medication trials (79-88%), and would make long-term arrangements, e.g. retirement, health care, will (69-82%), with larger proportions for scenarios with higher hypothetical genetic risk. CONCLUSIONS: Our findings indicate that the vast majority of CN adults participating in a research registry expresses interest in AD genetic risk research and disclosure. Interest in genetic risk disclosure is higher in scenarios corresponding to the APOE-ε4 genotype. This suggests APOE-ε4 screening within an online research registry is potentially a well-received method to accelerate inclusion for trials.


Subject(s)
Alzheimer Disease , Male , Adult , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Disclosure , Genotype , Apolipoproteins E/genetics , Genetic Predisposition to Disease/genetics , Apolipoprotein E4/genetics
9.
PLoS Comput Biol ; 20(1): e1011164, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38232116

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.


Subject(s)
Alzheimer Disease , Transcranial Direct Current Stimulation , Humans , Alzheimer Disease/therapy , Transcranial Direct Current Stimulation/methods , Brain/physiology , Magnetoencephalography , Neural Networks, Computer
10.
Neuropsychology ; 38(1): 96-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676135

ABSTRACT

OBJECTIVE: We aimed to investigate whether item response theory (IRT)-based scoring allows for a more accurate, responsive, and less biased assessment of everyday functioning than traditional classical test theory (CTT)-based scoring, as measured with the Amsterdam Instrumental Activities of Daily Living Questionnaire. METHOD: In this longitudinal multicenter study including cognitively normal and impaired individuals, we examined IRT-based and CTT-based score distributions and differences between diagnostic groups using linear regressions, and investigated scale attenuation. We compared change over time between scoring methods using linear mixed models with random intercepts and slopes for time. RESULTS: Two thousand two hundred ninety-four participants were included (66.6 ± 7.7 years, 54% female): n = 2,032 (89%) with normal cognition, n = 93 (4%) with subjective cognitive decline, n = 79 (3%) with mild cognitive impairment, and n = 91 (4%) with dementia. At baseline, IRT-based and CTT-based scores were highly correlated (r = -0.92). IRT-based scores showed less scale attenuation than CTT-based scores. In a subsample of n = 1,145 (62%) who were followed for a mean of 1.3 (SD = 0.6) years, IRT-based scores declined significantly among cognitively normal individuals (unstandardized coefficient [B] = -0.15, 95% confidence interval, 95% CI [-0.28, -0.03], effect size = -0.02), whereas CTT-based scores did not (B = 0.20, 95% CI [-0.02, 0.41], effect size = 0.02). In the other diagnostic groups, effect sizes of change over time were similar. CONCLUSIONS: IRT-based scores were less affected by scale attenuation than CTT-based scores. With regard to responsiveness, IRT-based scores showed more signal than CTT-based scores in early disease stages, highlighting the IRT-based scores' superior suitability for use in preclinical populations. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Activities of Daily Living , Cognitive Dysfunction , Humans , Female , Aged , Male , Surveys and Questionnaires , Cognition , Cognitive Dysfunction/diagnosis
11.
Alzheimers Res Ther ; 15(1): 189, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919783

ABSTRACT

BACKGROUND: The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer's disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies. METHODS: Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests. RESULTS: 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (ß = - 0.22, OR = 0.80, p < .05), more prior study visits (ß = - 0.93, OR = 0.40, p < .001), and positive family history of dementia (ß = 2.08, OR = 8.02, p < .01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X2 = 10.56, p = .001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X2 = 32.34, p < .001). CONCLUSIONS: The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018-002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/epidemiology , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Cognition , Longitudinal Studies , Positron-Emission Tomography , Male , Female
12.
J Prev Alzheimers Dis ; 10(4): 837-846, 2023.
Article in English | MEDLINE | ID: mdl-37874106

ABSTRACT

BACKGROUND: Multimer detection system-oligomeric amyloid-ß (MDS-OAß) measure plasma OAß level, which is associated with earlier Alzheimer's disease (AD) pathology. However, no study has investigated MDS-OAß differences in cognitive normal older adults (CN) with or without cerebral Aß burden and its correlation with Aß deposition and white matter (WM) integrity. OBJECTIVE: To investigate associations among cerebral Aß burden, MDS-OAß, and WM integrity in CN. DESIGN: This is a single center, cross-sectional study which used data from Catholic Aging Brain Imaging (CABI) database. SETTING: CABI database contains brain scans of patients who visited the outpatient clinic at Catholic Brain Health Center, Yeouido St. Mary's Hospital, The Catholic University of Korea, between 2017 and 2022. PARTICIPANTS: A total 34 amyloid-PET negative CN and 23 amyloid-PET positive CN were included. MEASUREMENTS: Plasma Aß level using MDS-OAß, cerebral Aß deposition level using global standardized uptake value ratio (SUVR) values, WM integrity using fractional anisotropy (FA) and mean diffusivity (MD), and cortical thickness from structural MRI were utilized. RESTULS: The amyloid-PET positive group showed higher MDS-OAß level than the amyloid-PET negative group (0.997 ± 0.19 vs. 0.79 ± 0.28, P <0.005), but they did not differ in WM integrity or cortical thickness. The MDS-OAß positive group showed higher global cerebral Aß deposition or mean global SUVR values (0.609 ± 0.135 vs. 0.533 ± 0.121 vs. P <0.05), lower regional FA of left forceps minor and the right superior longitudinal fasciculus (family-wise error rate, p <0.05), and lower cortical thickness of left fusiform (p <0.05, Monte Carlo simulation) than the MDS-OAß negative group. MDS-OAß was positively associated with global cerebral Aß deposition (r=0.278, P <0.05) and negatively associated (r = - 0.324, P < 0.05) with regional WM integrity. CONCLUSIONS: In this study, MDS-OAß value demonstrated earlier and different AD pathology than cerebral Aß retention according to amyloid-PET. Longitudinal studies are needed to elucidate the causal relationships of plasma OAß and cerebral Aß with WM integrity disturbance and cortical atrophy during the AD trajectory.


Subject(s)
Alzheimer Disease , White Matter , Humans , Aged , Amyloid beta-Peptides/metabolism , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Positron-Emission Tomography
13.
Genome Med ; 15(1): 79, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794492

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS: We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS: Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS: These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.


Subject(s)
Alzheimer Disease , Humans , Female , Male , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genome-Wide Association Study , tau Proteins/genetics , Biomarkers , Inflammation , Apolipoproteins E/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics
14.
Neurology ; 101(19): e1850-e1862, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37748892

ABSTRACT

BACKGROUND AND OBJECTIVES: Recently, the US Food and Drug Administration approved the tau-binding radiotracer [18F]flortaucipir and an accompanying visual read method to support the diagnostic process in cognitively impaired patients assessed for Alzheimer disease (AD). Studies evaluating this visual read method are limited. In this study, we evaluated the performance of the visual read method in participants along the AD continuum and dementia with Lewy bodies (DLB) by determining its reliability, accordance with semiquantitative analyses, and associations with clinically relevant variables. METHODS: We included participants who underwent tau-PET at Amsterdam University Medical Center. A subset underwent follow-up tau-PET. Two trained nuclear medicine physicians visually assessed all scans. Inter-reader agreement was calculated using Cohen κ. To examine the concordance of visual read tau positivity with semiquantification, we defined standardized uptake value ratio (SUVr) positivity using different threshold approaches. To evaluate the prognostic value of tau-PET visual read, we performed linear mixed models with longitudinal Mini-Mental State Examination (MMSE). RESULTS: We included 263 participants (mean age 68.5 years, 45.6% female), including 147 cognitively unimpaired (CU) participants, 97 amyloid-positive participants with mild cognitive impairment or AD dementia (AD), and 19 participants with DLB. The visual read inter-reader agreement was excellent (κ = 0.95, CI 0.91-0.99). None of the amyloid-negative CU participants (0/92 [0%]) and 1 amyloid-negative participant with DLB (1/12 [8.3%]) were tau-positive. Among amyloid-positive participants, 13 CU participants (13/52 [25.0%]), 85 with AD (85/97 [87.6%]), and 3 with DLB (3/7 [42.9%]) were tau-positive. Two-year follow-up visual read status was identical to baseline. Tau-PET visual read corresponded strongly to SUVr status, with up to 90.4% concordance. Visual read tau positivity was associated with a decline on the MMSE in CU participants (ß = -0.52, CI -0.74 to -0.30, p < 0.001) and participants with AD (ß = -0.30, CI -0.58 to -0.02, p = 0.04). DISCUSSION: The excellent inter-reader agreement, strong correspondence with SUVr, and longitudinal stability indicate that the visual read method is reliable and robust, supporting clinical application. Furthermore, visual read tau positivity was associated with prospective cognitive decline, highlighting its additional prognostic potential. Future studies in unselected cohorts are needed for a better generalizability to the clinical population. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that [18F]flortaucipir visual read accurately distinguishes patients with low tau-tracer binding from those with high tau-tracer binding and is associated with amyloid positivity and cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Humans , Female , Aged , Male , Alzheimer Disease/metabolism , Lewy Body Disease/complications , Prospective Studies , Reproducibility of Results , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography/methods , Cognitive Dysfunction/complications , Amyloid/metabolism
15.
Alzheimers Res Ther ; 15(1): 142, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608393

ABSTRACT

BACKGROUND: Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. METHODS: We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. RESULTS: APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. CONCLUSIONS: Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Presenilin-1 , Animals , Humans , Mice , Alzheimer Disease/genetics , Amyloidogenic Proteins , Mice, Transgenic , Mutation/genetics , Presenilin-1/genetics , Amyloid beta-Protein Precursor/genetics
16.
NPJ Parkinsons Dis ; 9(1): 124, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640753

ABSTRACT

There is increasing interest in studying retinal biomarkers for various neurodegenerative diseases. Specific protein aggregates associated with neurodegenerative diseases are present in the retina and could be visualised in a non-invasive way. This study aims to assess the specificity and sensitivity of retinal α-synuclein aggregates in neuropathologically characterised α-synucleinopathies, other neurodegenerative diseases and non-neurological controls. Post-mortem eyes (N = 99) were collected prospectively through the Netherlands Brain Bank from donors with Parkinson's disease (and dementia), dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, other neurodegenerative diseases and non-neurological controls. Multiple retinal and optic nerve cross-sections were immunostained with anti-α-synuclein antibodies (LB509, KM51, and anti-pSer129) and assessed for aggregates and inclusions. α-Synuclein was observed as Lewy neurites in the retina and oligodendroglial cytoplasmic inclusions in the optic nerve and was highly associated with Lewy body disease (P < 0.001) and multiple system atrophy (P = 0.001). In all multiple system atrophy cases, the optic nerve showed oligodendroglial cytoplasmic inclusions, while retinal Lewy neurites were absent, despite coincidental brain Lewy pathology. With high specificity (97%) and sensitivity (82%), retinal/optic nerve α-synuclein differentiates primary α-synucleinopathies from other cases and controls. α-Synuclein pathology occurs specifically in the retina and optic nerve of primary α-synucleinopathies as opposed to other neurodegenerative diseases-with and without α-synuclein co-pathology-and controls. The absence of retinal Lewy neurites in multiple system atrophy could contribute to the development of an in vivo retinal biomarker that discriminates between Lewy body disease and multiple system atrophy.

17.
Alzheimers Dement ; 19(12): 5773-5794, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37496313

ABSTRACT

INTRODUCTION: We conducted a systematic literature review and meta-analysis of empirical evidence on expected and experienced implications of sharing Alzheimer's disease (AD) biomarker results with individuals without dementia. METHODS: PubMed, Embase, APA PsycInfo, and Web of Science Core Collection were searched according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results from included studies were synthesized, and quantitative data on psychosocial impact were meta-analyzed using a random-effects model. RESULTS: We included 35 publications. Most personal stakeholders expressed interest in biomarker assessment. Learning negative biomarker results led to relief and sometimes frustration, while positive biomarkers induced anxiety but also clarity. Meta-analysis of five studies including 2012 participants (elevated amyloid = 1324 [66%], asymptomatic = 1855 [92%]) showed short-term psychological impact was not significant (random-effect estimate = 0.10, standard error = 0.23, P = 0.65). Most professional stakeholders valued biomarker testing, although attitudes and practices varied considerably. DISCUSSION: Interest in AD biomarker testing was high and sharing their results did not cause psychological harm. HIGHLIGHTS: Most personal stakeholders expressed interest in Alzheimer's disease biomarker assessment. Personal motivations included gaining insight, improving lifestyle, or preparing for the future. There was no short-term psychological impact of sharing biomarker status, implying it can be safe. Most professional stakeholders valued biomarker testing, believing the benefits outweigh the risk. Harmonized guidelines on biomarker testing and sharing results are required.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Amyloid , Biomarkers , Amyloidogenic Proteins , Amyloid beta-Peptides
18.
EJNMMI Res ; 13(1): 71, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37493827

ABSTRACT

BACKGROUND: Behavioural symptoms and frontotemporal hypometabolism overlap between behavioural variant of frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD), hampering diagnostic distinction. Voxel-wise comparisons of brain metabolism might identify specific frontotemporal-(hypo)metabolic regions between bvFTD and PPD. We investigated brain metabolism in bvFTD and PPD and its relationship with behavioural symptoms, social cognition, severity of depressive symptoms and cognitive functioning. RESULTS: Compared to controls, bvFTD showed decreased metabolism in the dorsal anterior cingulate cortex (dACC) (p < 0.001), orbitofrontal cortex (OFC), temporal pole, dorsolateral prefrontal cortex (dlPFC) and caudate, whereas PPD showed no hypometabolism. Compared to PPD, bvFTD showed decreased metabolism in the dACC (p < 0.001, p < 0.05FWE), insula, Broca's area, caudate, thalamus, OFC and temporal cortex (p < 0.001), whereas PPD showed decreased metabolism in the motor cortex (p < 0.001). Across bvFTD and PPD, decreased metabolism in the temporal cortex (p < 0.001, p < 0.05FWE), dACC and frontal cortex was associated with worse social cognition. Decreased metabolism in the dlPFC was associated with compulsiveness (p < 0.001). Across bvFTD, PPD and controls, decreased metabolism in the PFC and motor cortex was associated with executive dysfunctioning (p < 0.001). CONCLUSIONS: Our findings indicate subtle but distinct metabolic patterns in bvFTD and PPD, most strongly in the dACC. The degree of frontotemporal and cingulate hypometabolism was related to impaired social cognition, compulsiveness and executive dysfunctioning. Our findings suggest that the dACC might be an important region to differentiate between bvFTD and PPD but needs further validation.

19.
Brain ; 146(10): 4040-4054, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37279597

ABSTRACT

Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-ß pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-ß pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , tau Proteins , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Cognitive Dysfunction/pathology , Cross-Sectional Studies , Magnetoencephalography , Neurons/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism
20.
Brain Commun ; 5(3): fcad088, 2023.
Article in English | MEDLINE | ID: mdl-37151225

ABSTRACT

Amyloid-ß accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional connectivity in the pre-dementia stages of Alzheimer's disease. We study the associations between abnormal cerebrospinal fluid amyloid and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive performance, in 701 non-demented participants from the European Prevention of Alzheimer's Dementia cohort. Voxel-wise eigenvector centrality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the interaction between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigenvector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality alterations in very early stages of Alzheimer's disease and show that centrality variability over time adds relevant information on the dynamic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early biomarker of the interplay between early Alzheimer's disease pathology and cognitive decline.

SELECTION OF CITATIONS
SEARCH DETAIL
...