Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658771

ABSTRACT

The environment influences brain and mental health, both detrimentally and beneficially. Existing research has emphasised the individual psychosocial 'microenvironment'. Less attention has been paid to 'macroenvironmental' challenges, including climate change, pollution, urbanicity, and socioeconomic disparity. Notably, the implications of climate and pollution on brain and mental health have only recently gained prominence. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.

2.
Sci Total Environ ; 912: 169237, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38101644

ABSTRACT

Dust models are essential for understanding the impact of mineral dust on Earth's systems, human health, and global economies, but dust emission modelling has large uncertainties. Satellite observations of dust emission point sources (DPS) provide a valuable dichotomous inventory of regional dust emissions. We develop a framework for evaluating dust emission model performance using existing DPS data before routine calibration of dust models. To illustrate this framework's utility and arising insights, we evaluated the albedo-based dust emission model (AEM) with its areal (MODIS 500 m) estimates of soil surface wind friction velocity (us∗) and common, poorly constrained grain-scale entrainment threshold (u∗ts) adjusted by a function of soil moisture (H). The AEM simulations are reduced to its frequency of occurrence, P(us∗>u∗tsH). The spatio-temporal variability in observed dust emission frequency is described by the collation of nine existing DPS datasets. Observed dust emission occurs rarely, even in North Africa and the Middle East, where DPS frequency averages 1.8 %, (~7 days y-1), indicating extreme, large wind speed events. The AEM coincided with observed dust emission ~71.4 %, but simulated dust emission ~27.4 % when no dust emission was observed, while dust emission occurrence was over-estimated by up to 2 orders of magnitude. For estimates to match observations, results showed that grain-scale u∗ts needed restricted sediment supply and compatibility with areal us∗. Failure to predict dust emission during observed events, was due to us∗ being too small because reanalysis winds (ERA5-Land) were averaged across 11 km pixels, and inconsistent with us∗ across 0.5 km pixels representing local maxima. Assumed infinite sediment supply caused the AEM to simulate dust emission whenever P(us∗>u∗tsH), producing false positives when wind speeds were large. The dust emission model scales of existing parameterisations need harmonising and a new parameterisation for u∗ts is required to restrict sediment supply over space and time.

3.
medRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873310

ABSTRACT

The environment influences mental health, both detrimentally and beneficially. Current research has emphasized the individual psychosocial 'microenvironment'. Less attention has been paid to 'macro-environmental' challenges including climate change, pollution, urbanicity and socioeconomic disparity. With the advent of large-scale big-data cohorts and an increasingly dense mapping of macroenvironmental parameters, we are now in a position to characterise the relation between macroenvironment, brain, and behaviour across different geographic and cultural locations globally. This review synthesises findings from recent epidemiological and neuroimaging studies, aiming to provide a comprehensive overview of the existing evidence between the macroenvironment and the structure and functions of the brain, with a particular emphasis on its implications for mental illness. We discuss putative underlying mechanisms and address the most common exposures of the macroenvironment. Finally, we identify critical areas for future research to enhance our understanding of the aetiology of mental illness and to inform effective interventions for healthier environments and mental health promotion.

4.
JAMA Psychiatry ; 80(10): 1066-1074, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37610741

ABSTRACT

Importance: Climate change, pollution, urbanization, socioeconomic inequality, and psychosocial effects of the COVID-19 pandemic have caused massive changes in environmental conditions that affect brain health during the life span, both on a population level as well as on the level of the individual. How these environmental factors influence the brain, behavior, and mental illness is not well known. Observations: A research strategy enabling population neuroscience to contribute to identify brain mechanisms underlying environment-related mental illness by leveraging innovative enrichment tools for data federation, geospatial observation, climate and pollution measures, digital health, and novel data integration techniques is described. This strategy can inform innovative treatments that target causal cognitive and molecular mechanisms of mental illness related to the environment. An example is presented of the environMENTAL Project that is leveraging federated cohort data of over 1.5 million European citizens and patients enriched with deep phenotyping data from large-scale behavioral neuroimaging cohorts to identify brain mechanisms related to environmental adversity underlying symptoms of depression, anxiety, stress, and substance misuse. Conclusions and Relevance: This research will lead to the development of objective biomarkers and evidence-based interventions that will significantly improve outcomes of environment-related mental illness.


Subject(s)
COVID-19 , Mental Health , Humans , COVID-19/epidemiology , Pandemics , Anxiety Disorders , Anxiety
5.
Sci Total Environ ; 883: 163452, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37088383

ABSTRACT

Establishing mineral dust impacts on Earth's systems requires numerical models of the dust cycle. Differences between dust optical depth (DOD) measurements and modelling the cycle of dust emission, atmospheric transport, and deposition of dust indicate large model uncertainty due partially to unrealistic model assumptions about dust emission frequency. Calibrating dust cycle models to DOD measurements typically in North Africa, are routinely used to reduce dust model magnitude. This calibration forces modelled dust emissions to match atmospheric DOD but may hide the correct magnitude and frequency of dust emission events at source, compensating biases in other modelled processes of the dust cycle. Therefore, it is essential to improve physically based dust emission modules. Here we use a global collation of satellite observations from previous studies of dust emission point source (DPS) dichotomous frequency data. We show that these DPS data have little-to-no relation with MODIS DOD frequency. We calibrate the albedo-based dust emission model using the frequency distribution of those DPS data. The global dust emission uncertainty constrained by DPS data (±3.8 kg m-2 y-1) provides a benchmark for dust emission model development. Our calibrated model results reveal much less global dust emission (29.1 ± 14.9 Tg y-1) than previous estimates, and show seasonally shifting dust emission predominance within and between hemispheres, as opposed to a persistent North African dust emission primacy widely interpreted from DOD measurements. Earth's largest dust emissions, proceed seasonally from East Asian deserts in boreal spring, to Middle Eastern and North African deserts in boreal summer and then Australian shrublands in boreal autumn-winter. This new analysis of dust emissions, from global sources of varying geochemical properties, have far-reaching implications for current and future dust-climate effects. For more reliable coupled representation of dust-climate projections, our findings suggest the need to re-evaluate dust cycle modelling and benefit from the albedo-based parameterisation.

6.
Ann Rev Mar Sci ; 14: 303-330, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34416126

ABSTRACT

A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.


Subject(s)
Ecosystem , Wind , Aerosols/analysis , Atmosphere , Nutrients , Oceans and Seas
7.
Environ Microbiol ; 23(12): 7591-7602, 2021 12.
Article in English | MEDLINE | ID: mdl-33998128

ABSTRACT

During a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.


Subject(s)
Clostridioides difficile , Animals , Chickens , Clostridioides , Clostridioides difficile/genetics , Fertilization , Manure , Poultry , Ribotyping
8.
Microb Biotechnol ; 13(5): 1631-1647, 2020 09.
Article in English | MEDLINE | ID: mdl-32697046

ABSTRACT

This is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens. During the fertilization process, the concentration of airborne bacteria culturable on blood agar medium increased more than 600 000-fold, and 1 m3 of air carried 2.9 × 105 viable enterococci, i.e. indicators of faecal contamination which had been undetectable in background air samples. Trajectory modelling suggested that atmospheric residence times and dispersion pathways were dependent on the time of day at which fertilization was performed. Measurements in a wind tunnel indicated that airborne bacterial emission fluxes from freshly fertilized soil under local climatic conditions on average were 100-fold higher than a previous estimate of average emissions from land. Faecal bacteria collected from soil and dust up to seven weeks after fertilization could be traced to their origins in the poultry barn by genomic sequencing. Comparative analyses of 16S rRNA gene sequences from manure, soil and dust showed that manure bacteria got aerosolized preferably, likely due to their attachment to low-density manure particles. Our data show that fertilization with manure may cause substantial increases of bacterial emissions from agricultural land. After mechanical incorporation of manure into soil, however, the associated risk of airborne infection is low.


Subject(s)
Manure , Soil , Agriculture , Animals , Bacteria/genetics , Chickens , Fertilization , Fertilizers , RNA, Ribosomal, 16S/genetics , Soil Microbiology
9.
Int J Biometeorol ; 63(10): 1347-1356, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31342243

ABSTRACT

Legionnaires' disease (LD) is a severe lung infection caused by the bacteria Legionella pneumophila which is usually associated with water managing installations like cooling towers. Several outbreaks of LD have been linked to individual sources of bioaerosol in the past. However, the transmission pathways as well as the influence of meteorological factors in the spreading of such bioaerosols remain unclear. Using the meteorological data near 12 LD outbreaks in Europe for the period 2000-2016, the correlation between key meteorological factors and the occurrence of LD was assessed. Temperature, humidity, atmospheric pressure, wind speed, precipitation, cloud cover and, for the first time, fog occurrence were included as potential risk factors. It was found that the occurrence of fog was related to four of the LD outbreaks, suggesting that the presence of fog droplets and/or the thermal inversions associated with fog may play a role in the disease spreading. This finding can contribute to outbreak investigations and to the prevention of future outbreaks.


Subject(s)
Legionella pneumophila , Legionnaires' Disease , Disease Outbreaks , Europe , Humans , Water Microbiology
10.
Proc Natl Acad Sci U S A ; 106(49): 20564-71, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19620716

ABSTRACT

Dust plays a vital role in climate and biophysical feedbacks in the Earth system. One source of dust, the Bodélé Depression in Chad, is estimated to produce about half the mineral aerosols emitted from the Sahara, which is the world's largest source. By using a variety of new remote sensing data, regional modeling, trajectory models, chemical analyses of dust, and future climate simulations, we investigate the current and past sensitivity of the Bodélé. We show that minor adjustments to small features of the atmospheric circulation, such as the Bodélé Low-Level Jet, could profoundly alter the behavior of this feature. Dust production during the mid-Holocene ceased completely from this key source region. Although subject to a great deal of uncertainty, some simulations of the 21st century indicate the potential for a substantial increase in dust production by the end of the century in comparison with current values.

SELECTION OF CITATIONS
SEARCH DETAIL
...