Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 193(9): 577, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34396491

ABSTRACT

Sequential extraction analyses are widely used for the determination of element speciation in sediments and soils. Typical sequential extraction protocols were developed to extract from low-carbonate samples and therefore are not necessarily suitable for high-carbonate samples. In this study, we tested increased reagent to sample ratios to adjust an existing sequential extraction procedure to analyze high-CaCO3 samples with concentrations ranging from 70 to above 90 %. Complete dissolution of the CaCO3 phase, and a higher extraction efficiency of manganese associated with the carbonate phase, was achieved when using four times the original reagent to sample ratio in the 2nd extraction step. This increase of reagent did not compromise the extraction of subsequent phases as shown by unaffected Fe concentrations in a low-carbonate sample. Hence, an essential outcome was that increasing the solution to sample ratio did not lead to the dissolution of other sedimentary phases, such as hydrous and crystalline iron oxides or sulfides. Thus, compared to other extraction protocols that use a lower reagent to sample ratio in the carbonate dissolution step, the new protocol allowed the complete extraction of oxide and sulfide phases in the following extraction steps. Furthermore, the study demonstrated the benefit of replacing Na-acetate with NH4-acetate to extract exchangeable ions and carbonates. We observed increased intensities for several analytes, i.e., trace metals such as Mo and As, due to less suppression of the analyte signal by NH4-acetate than by Na-acetate during analysis by inductively coupled plasma optical emission spectrometry (ICP-OES).


Subject(s)
Calcium Carbonate , Trace Elements , Environmental Monitoring , Soil , Sulfides/analysis , Trace Elements/analysis
2.
Sci Rep ; 10(1): 20351, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230106

ABSTRACT

Environmental DNA (eDNA) metabarcoding of marine sediments has revealed large amounts of sequences assigned to planktonic taxa. How this planktonic eDNA is delivered on the seafloor and preserved in the sediment is not well understood. We address these questions by comparing metabarcoding and microfossil foraminifera assemblages in sediment cores taken off Newfoundland across a strong ecological gradient. We detected planktonic foraminifera eDNA down to 30 cm and observed that the planktonic/benthic amplicon ratio changed with depth. The relative proportion of planktonic foraminiferal amplicons remained low from the surface down to 10 cm, likely due to the presence of DNA from living benthic foraminifera. Below 10 cm, the relative proportion of planktonic foraminifera amplicons rocketed, likely reflecting the higher proportion of planktonic eDNA in the DNA burial flux. In addition, the microfossil and metabarcoding assemblages showed a congruent pattern indicating that planktonic foraminifera eDNA is deposited without substantial lateral advection and preserves regional biogeographical patterns, indicating deposition by a similar mechanism as the foraminiferal shells. Our study shows that the planktonic eDNA preserved in marine sediments has the potential to record climatic and biotic changes in the pelagic community with the same spatial and temporal resolution as microfossils.


Subject(s)
DNA, Environmental/genetics , Foraminifera/genetics , Geologic Sediments/parasitology , Oceans and Seas , Plankton/parasitology , Biodiversity , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Fossils/parasitology , Newfoundland and Labrador
SELECTION OF CITATIONS
SEARCH DETAIL