Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 9(1): 16831, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727963

ABSTRACT

Clinical trial faecal collections present challenges through geographical spread and inexperienced participants. Collection techniques have been developed and tested to overcome these challenges, but previous studies investigating these techniques have demonstrated a highly variable capacity for sample preservation. Furthermore, these studies typically only examine either preservation of genetic content or metabolites, not both. This study investigated the Stool Nucleic Acid Collection and Preservation Tube (Norgen BioTek Corp) for the preservation of both microbial DNA and microbial organic acid metabolites in human faecal samples when compared to frozen samples. Twenty six healthy adult participants were instructed to collect a bowel movement, subsample into collection tubes and immediately transfer the remaining bulk to -20 °C storage. Resulting organic acid concentrations remained comparable across methods when the preservation tubes were used correctly. The 16S rRNA gene sequencing data revealed twenty significantly different bacterial genera between the two collection methods. Ten Gram-negative genera were more abundant in the collection tubes, and ten Gram-positive genera were more abundant in the fresh frozen samples. This study has illustrated that faecal collection methods bias the microbial community profile according to Gram status and this should be considered when designing studies that collect and store human faecal samples.


Subject(s)
Bacteria/classification , Feces/chemistry , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Specimen Handling/adverse effects , Adult , Bacteria/chemistry , Bacteria/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Freezing , Healthy Volunteers , Humans , Hydrogen-Ion Concentration , Microbiota , Phylogeny , Sequence Analysis, DNA , Specimen Handling/instrumentation
2.
Int J Mol Sci ; 20(9)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052187

ABSTRACT

High red meat intake is associated with the risk of colorectal cancer (CRC), whereas dietary fibers, such as resistant starch (RS) seemed to protect against CRC. The aim of this study was to determine whether high-amylose potato starch (HAPS), high-amylose maize starch (HAMS), and butyrylated high-amylose maize starch (HAMSB)-produced by an organocatalytic route-could oppose the negative effects of a high-protein meat diet (HPM), in terms of fermentation pattern, cecal microbial composition, and colonic biomarkers of CRC. Rats were fed a HPM diet or an HPM diet where 10% of the maize starch was substituted with either HAPS, HAMS, or HAMSB, for 4 weeks. Feces, cecum digesta, and colonic tissue were obtained for biochemical, microbial, gene expression (oncogenic microRNA), and immuno-histochemical (O6-methyl-2-deoxyguanosine (O6MeG) adduct) analysis. The HAMS and HAMSB diets shifted the fecal fermentation pattern from protein towards carbohydrate metabolism. The HAMSB diet also substantially increased fecal butyrate concentration and the pool, compared with the other diets. All three RS treatments altered the cecal microbial composition in a diet specific manner. HAPS and HAMSB showed CRC preventive effects, based on the reduced colonic oncogenic miR17-92 cluster miRNA expression, but there was no significant diet-induced differences in the colonic O6MeG adduct levels. Overall, HAMSB consumption showed the most potential for limiting the negative effects of a high-meat diet.


Subject(s)
Amylose/metabolism , Colorectal Neoplasms/diet therapy , Diet, High-Protein/adverse effects , Dietary Carbohydrates/metabolism , Fermentation , Gastrointestinal Microbiome , Intestine, Large/metabolism , Amylose/chemistry , Amylose/pharmacology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Butyrates/chemistry , Colorectal Neoplasms/etiology , Colorectal Neoplasms/prevention & control , Dietary Carbohydrates/pharmacology , Dietary Carbohydrates/therapeutic use , Intestine, Large/drug effects , Intestine, Large/microbiology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Rats , Rats, Sprague-Dawley , Solanum tuberosum/chemistry , Zea mays/chemistry
3.
Nutr Res ; 36(9): 982-988, 2016 09.
Article in English | MEDLINE | ID: mdl-27632918

ABSTRACT

O(6)-methyl guanine (O(6)MeG) adducts are major toxic, promutagenic, and procarcinogenic adducts involved in colorectal carcinogenesis. Resistant starch and its colonic metabolite butyrate are known to protect against oncogenesis in the colon. In this study, we hypothesized that a dietary intervention that specifically delivers butyrate to the large bowel (notably butyrylated high-amylose maize starch [HAMSB]) would reduce colonic levels of O(6)MeG in rats shortly after exposure to the deoxyribonucleic acid (DNA) alkylating agent azoxymethane (AOM) when compared with a low-amylose maize starch (LAMS). A further objective was to validate an immunohistochemistry (IHC) method for quantifying O(6)MeG against a high-performance liquid chromatography method using fluorescence and diode array detection. Rats were fed either LAMS or HAMSB diets for 4 weeks followed by a single injection of AOM or saline and killed 6 hours later. After AOM exposure, both IHC and high-performance liquid chromatography method using fluorescence and diode array detection measured a substantially increased quantity of DNA adducts in the colon (P<.001). Both techniques demonstrated equally that consumption of HAMSB provided a protective effect by reducing colonic adduct load compared with the LAMS diet (P<.05). In addition, IHC allowed visualization of the O(6)MeG distribution, where adduct load was reduced in the lower third of the crypt compartment in HAMSB-fed rats (P=.036). The apoptotic response to AOM was higher in the HAMSB-fed rats (P=.002). In conclusion, the reduction in O(6)MeG levels and enhancement of the apoptotic response to DNA damage in the colonic epithelium through consumption of HAMSB provide mechanistic insights into how HAMSB protects against colorectal tumorigenesis.


Subject(s)
Amylose/pharmacology , Azoxymethane/adverse effects , Butyrates/metabolism , Colon/drug effects , DNA Adducts/metabolism , Diet , Guanine/analogs & derivatives , Amylose/metabolism , Animals , Carcinogens , Chromatography, High Pressure Liquid , Colon/metabolism , Guanine/metabolism , Immunohistochemistry , Male , Rats, Sprague-Dawley
4.
Cancer Biol Ther ; 15(11): 1515-23, 2014.
Article in English | MEDLINE | ID: mdl-25482948

ABSTRACT

Population studies suggest that greater dietary fiber intake may lower colorectal cancer (CRC) risk, possibly through the colonic bacterial fermentative production of butyrate. Butyrylated starch delivers butyrate to the colon of humans with potential to reduce CRC risk but high doses may exacerbate risk through promoting epithelial proliferation. Here we report the effects of increasing dietary butyrylated high amylose maize starch (HAMSB) on azoxymethane (AOM) induced distal colonic DNA damage, cell proliferation, mucus layer thickness and apoptosis in rats. Five groups of 15 rats were fed AIN-93G based diets containing 0-40% HAMSB for 4 weeks then injected with (AOM) and killed 6 hours later. Large bowel total SCFA, acetate and butyrate pools and hepatic portal venous plasma total SCFA, acetate and butyrate concentrations were higher with greater HAMSB intake. Distal colonic epithelial apoptotic index and colonic mucus thickness increased, while DNA single strand breaks decreased dose-dependently with greater HAMSB intake. Colonocyte proliferation rates were unaffected by diet. These data suggest that increasing large bowel butyrate may reduce the risk of CRC in a dose dependent manner by enhancing apoptotic surveillance in the colonic epithelium for damaged cells without promoting the risk of tumorigenesis through increased cell proliferation.


Subject(s)
Colorectal Neoplasms/metabolism , Mutagens/pharmacology , Starch/metabolism , Ammonia/metabolism , Animals , Apoptosis/drug effects , Biomarkers , Butyrates/chemistry , Cell Proliferation/drug effects , DNA Damage , Diet , Dietary Carbohydrates , Fatty Acids, Volatile/blood , Fatty Acids, Volatile/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mucus/metabolism , Mutagens/administration & dosage , Mutagens/toxicity , Rats , Starch/administration & dosage , Starch/chemistry
5.
Carcinogenesis ; 33(1): 197-202, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22080572

ABSTRACT

Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of increasing large bowel butyrate concentration by dietary butyrylated starch on the colonic epithelium of rats treated with the genotoxic carcinogen azoxymethane (AOM). Four groups of 10 male rats were fed AIN-93G based-diets containing either low amylose maize starch (LAMS), LAMS with 3% tributyrin, 10% high amylose maize starch (HAMS) or 10% butyrylated HAMS (HAMSB). HAMS and HAMSB starches were cooked by heating in water. After 4 weeks, rats were injected once with AOM and killed 6 h later. Rates of apoptosis and proliferation were measured in colonic epithelium. Short-chain fatty acid concentrations in large bowel digesta and hepatic portal venous plasma were higher in HAMSB than all other groups. Apoptotic rates in the distal colon were increased by HAMSB and correlated with luminal butyrate concentrations but cellular proliferation rates were unaffected by diet. The increase in apoptosis was most marked in the base and proliferative zone of the crypt. Regulation of luminal butyrate using HAMSB increases the rates of apoptotic deletion of DNA-damaged colonocytes. We propose this pro-apoptotic function of butyrate plays a major role reducing tumour formation in the AOM-treated rat and that these data support a potential protective role of butyrate in CRC.


Subject(s)
Apoptosis/drug effects , Butyrates/pharmacology , Colonic Neoplasms/prevention & control , Starch/pharmacology , Animals , Azoxymethane , Caspase 3/physiology , Cell Proliferation/drug effects , Colonic Neoplasms/chemically induced , Colonic Neoplasms/pathology , Fatty Acids, Volatile/blood , Intestinal Mucosa/pathology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...