Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2168, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461149

ABSTRACT

In common with other omics technologies, mass spectrometry (MS)-based proteomics produces ever-increasing amounts of raw data, making efficient analysis a principal challenge. A plethora of different computational tools can process the MS data to derive peptide and protein identification and quantification. However, during the last years there has been dramatic progress in computer science, including collaboration tools that have transformed research and industry. To leverage these advances, we develop AlphaPept, a Python-based open-source framework for efficient processing of large high-resolution MS data sets. Numba for just-in-time compilation on CPU and GPU achieves hundred-fold speed improvements. AlphaPept uses the Python scientific stack of highly optimized packages, reducing the code base to domain-specific tasks while accessing the latest advances. We provide an easy on-ramp for community contributions through the concept of literate programming, implemented in Jupyter Notebooks. Large datasets can rapidly be processed as shown by the analysis of hundreds of proteomes in minutes per file, many-fold faster than acquisition. AlphaPept can be used to build automated processing pipelines with web-serving functionality and compatibility with downstream analysis tools. It provides easy access via one-click installation, a modular Python library for advanced users, and via an open GitHub repository for developers.


Subject(s)
Proteomics , Software , Proteomics/methods , Mass Spectrometry/methods , Proteome
2.
Nat Commun ; 14(1): 5252, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644046

ABSTRACT

The Dynamic Organellar Maps (DOMs) approach combines cell fractionation and shotgun-proteomics for global profiling analysis of protein subcellular localization. Here, we enhance the performance of DOMs through data-independent acquisition (DIA) mass spectrometry. DIA-DOMs achieve twice the depth of our previous workflow in the same mass spectrometry runtime, and substantially improve profiling precision and reproducibility. We leverage this gain to establish flexible map formats scaling from high-throughput analyses to extra-deep coverage. Furthermore, we introduce DOM-ABC, a powerful and user-friendly open-source software tool for analyzing profiling data. We apply DIA-DOMs to capture subcellular localization changes in response to starvation and disruption of lysosomal pH in HeLa cells, which identifies a subset of Golgi proteins that cycle through endosomes. An imaging time-course reveals different cycling patterns and confirms the quantitative predictive power of our translocation analysis. DIA-DOMs offer a superior workflow for label-free spatial proteomics as a systematic phenotype discovery tool.


Subject(s)
Endosomes , Humans , HeLa Cells , Reproducibility of Results , Cell Fractionation , Mass Spectrometry
3.
Science ; 380(6651): 1258-1265, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37347855

ABSTRACT

During initiation of antiviral and antitumor T cell-mediated immune responses, dendritic cells (DCs) cross-present exogenous antigens on major histocompatibility complex (MHC) class I molecules. Cross-presentation relies on the unusual "leakiness" of endocytic compartments in DCs, whereby internalized proteins escape into the cytosol for proteasome-mediated generation of MHC I-binding peptides. Given that type 1 conventional DCs excel at cross-presentation, we searched for cell type-specific effectors of endocytic escape. We devised an assay suitable for genetic screening and identified a pore-forming protein, perforin-2 (Mpeg1), as a dedicated effector exclusive to cross-presenting cells. Perforin-2 was recruited to antigen-containing compartments, where it underwent maturation, releasing its pore-forming domain. Mpeg1-/- mice failed to efficiently prime CD8+ T cells to cell-associated antigens, revealing an important role for perforin-2 in cytosolic entry of antigens during cross-presentation.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , Endocytosis , Pore Forming Cytotoxic Proteins , Animals , Mice , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cross-Priming/genetics , Cross-Priming/immunology , Dendritic Cells/immunology , Endocytosis/genetics , Endocytosis/immunology , Genetic Testing , Histocompatibility Antigens Class I , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Proteolysis
4.
Science ; 376(6599): eabf9088, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35709258

ABSTRACT

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.


Subject(s)
Centrosome , Neural Stem Cells , Neurogenesis , Neurons , Periventricular Nodular Heterotopia , Protein Interaction Maps , Alternative Splicing , Animals , Brain/abnormalities , Centrosome/metabolism , Humans , Induced Pluripotent Stem Cells , Mice , Microtubules/metabolism , Neurons/metabolism , Periventricular Nodular Heterotopia/metabolism , Proteome/metabolism , RNA Splicing Factors/metabolism , Transcription Factors/metabolism
5.
EMBO J ; 40(8): e105492, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33709510

ABSTRACT

Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV-1-infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re-routed to non-viral EVs in a Nef-dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.


Subject(s)
Extracellular Vesicles/metabolism , HIV Infections/metabolism , Proteome/metabolism , Cells, Cultured , HEK293 Cells , HIV-1 , Humans , Jurkat Cells , Leukosialin/metabolism , Membrane Glycoproteins/metabolism , RNA Helicases/metabolism
6.
Curr Protoc Bioinformatics ; 71(1): e105, 2020 09.
Article in English | MEDLINE | ID: mdl-32931150

ABSTRACT

The Perseus software provides a comprehensive framework for the statistical analysis of large-scale quantitative proteomics data, also in combination with other omics dimensions. Rapid developments in proteomics technology and the ever-growing diversity of biological studies increasingly require the flexibility to incorporate computational methods designed by the user. Here, we present the new functionality of Perseus to integrate self-made plugins written in C#, R, or Python. The user-written codes will be fully integrated into the Perseus data analysis workflow as custom activities. This also makes language-specific R and Python libraries from CRAN (cran.r-project.org), Bioconductor (bioconductor.org), PyPI (pypi.org), and Anaconda (anaconda.org) accessible in Perseus. The different available approaches are explained in detail in this article. To facilitate the distribution of user-developed plugins among users, we have created a plugin repository for community sharing and filled it with the examples provided in this article and a collection of already existing and more extensive plugins. © 2020 The Authors. Basic Protocol 1: Basic steps for R plugins Support Protocol 1: R plugins with additional arguments Basic Protocol 2: Basic steps for python plugins Support Protocol 2: Python plugins with additional arguments Basic Protocol 3: Basic steps and construction of C# plugins Basic Protocol 4: Basic steps of construction and connection for R plugins with C# interface Support Protocol 4: Advanced example of R Plugin with C# interface: UMAP Basic Protocol 5: Basic steps of construction and connection for python plugins with C# interface Support Protocol 5: Advanced example of python plugin with C# interface: UMAP Support Protocol 6: A basic workflow for the analysis of label-free quantification proteomics data using perseus.


Subject(s)
Computational Biology , Proteomics , Software , Programming Languages
7.
EMBO J ; 39(2): e102586, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31802527

ABSTRACT

ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/physiology , Endosomal Sorting Complexes Required for Transport , Intracellular Membranes/metabolism , Microautophagy , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/growth & development , Homeostasis , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/metabolism
8.
Elife ; 82019 03 13.
Article in English | MEDLINE | ID: mdl-30865586

ABSTRACT

Misfolded proteins in the endoplasmic reticulum (ER) activate the unfolded protein response (UPR), which enhances protein folding to restore homeostasis. Additional pathways respond to ER stress, but how they help counteract protein misfolding is incompletely understood. Here, we develop a titratable system for the induction of ER stress in yeast to enable a genetic screen for factors that augment stress resistance independently of the UPR. We identify the proteasome biogenesis regulator Rpn4 and show that it cooperates with the UPR. Rpn4 abundance increases during ER stress, first by a post-transcriptional, then by a transcriptional mechanism. Induction of RPN4 transcription is triggered by cytosolic mislocalization of secretory proteins, is mediated by multiple signaling pathways and accelerates clearance of misfolded proteins from the cytosol. Thus, Rpn4 and the UPR are complementary elements of a modular cross-compartment response to ER stress.


Subject(s)
DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Transcription Factors/metabolism , Unfolded Protein Response , Endoplasmic Reticulum/enzymology , Organelle Biogenesis
9.
Curr Protoc Cell Biol ; 83(1): e81, 2019 06.
Article in English | MEDLINE | ID: mdl-30489039

ABSTRACT

Eukaryotic cells are highly compartmentalized and protein subcellular localization critically influences protein function. Identification of the subcellular localizations of proteins and their translocation events upon perturbation has mostly been confined to targeted studies or laborious microscopy-based methods. Here we describe a systematic mass spectrometry-based method for spatial proteomics. The approach uses simple fractionation profiling and has two applications: Firstly it can be used to infer subcellular protein localization on a proteome-wide scale, resulting in a protein map of the cell. Secondly, the method permits identification of changes in protein localization, by comparing maps made under different conditions, as a tool for unbiased systems cell biology. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Organelles/metabolism , Proteomics/methods , Intracellular Space/metabolism , Mass Spectrometry/methods , Organelles/ultrastructure , Proteins/analysis , Proteins/metabolism , Subcellular Fractions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...