Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Virol ; 93(3): 1792-1795, 2021 03.
Article in English | MEDLINE | ID: mdl-32975843

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic calls for effective and safe treatments. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 actively replicates in the throat, unlike SARS-CoV, and shows high pharyngeal viral shedding even in patients with mild symptoms of the disease. HCoV-229E is one of four coronaviruses causing the common cold. In this study, the efficacy of ColdZyme® (CZ-MD), a medical device mouth spray, was tested against SARS-CoV-2 and HCoV-229E in vitro. The CZ-MD provides a protective glycerol barrier containing cod trypsin as an ancillary component. Combined, these ingredients can inactivate common cold viruses in the throat and mouth. The CZ-MD is believed to act on the viral surface proteins that would perturb their entry pathway into cells. The efficacy and safety of the CZ-MD have been demonstrated in clinical trials on the common cold. METHOD OF STUDY: The ability of the CZ-MD to inactivate SARS-CoV-2 and HCoV-229E was tested using an in vitro virucidal suspension test (ASTM E1052). RESULTS: CZ-MD inactivated SARS-CoV-2 by 98.3% and HCoV-229E by 99.9%. CONCLUSION: CZ-MD mouth spray can inactivate the respiratory coronaviruses SARS-CoV-2 and HCoV-229E in vitro. Although the in vitro results presented cannot be directly translated into clinical efficacy, the study indicates that CZ-MD might offer a protective barrier against SARS-CoV-2 and a decreased risk of COVID-19 transmission.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Glycerol/pharmacology , SARS-CoV-2/drug effects , Trypsin/pharmacology , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/transmission , Common Cold/drug therapy , Common Cold/prevention & control , Common Cold/transmission , Disinfectants/pharmacology , Humans , Viral Proteins/drug effects , COVID-19 Drug Treatment
2.
Int J Biol Macromol ; 125: 847-855, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30550824

ABSTRACT

Atlantic cod trypsin ZT is biochemically characterized for the first time in this report in comparison to a group I trypsin (cod trypsin I). To our knowledge, trypsin ZT is the first thoroughly characterized group III trypsin. A more detailed understanding of trypsin ZT biochemistry may give insight into its physiological role as well as its potential use within the biotechnology sector. Stability is an important factor when it comes to practical applications of enzymes. Compared to trypsin I, trypsin ZT shows differences in pH and heat stability, sensitivity to inhibitors and sub-site substrate specificity as shown by multiplex substrate profiling analysis. Based on the analysis, trypsin ZT cleaved at arginine and lysine as other trypsins. Furthermore, trypsin ZT is better than trypsin I in cleaving peptides containing several consecutive positively charged residues. Lysine- and arginine-rich amino acid sequences are frequently found in human viral proteins. Thus, trypsin ZT may be effective in inactivating human and fish viruses implying a possible role for the enzyme in the natural defence of Atlantic cod. The results from this study can lead to multiple practical applications of trypsin ZT.


Subject(s)
Gadus morhua/metabolism , Trypsin/metabolism , Amino Acid Sequence , Animals , Biotechnology/methods , Humans , Substrate Specificity
3.
Redox Biol ; 20: 217-235, 2019 01.
Article in English | MEDLINE | ID: mdl-30368041

ABSTRACT

Upregulations of neuronal nitric oxide synthase (nNOS) in the rodent brain have been associated with neuronal aging. To address underlying mechanisms we generated SH-SY5Y neuronal cells constitutively expressing nNOS at a level similar to mouse brain (nNOS+ versus MOCK). Initial experiments revealed S-nitrosylations (SNO) of key players of protein homeostasis: heat shock cognate HSC70/HSPA8 within its nucleotide-binding site, and UBE2D ubiquitin conjugating enzymes at the catalytic site cysteine. HSPA8 is involved in protein folding, organelle import/export and chaperone-mediated LAMP2a-dependent autophagy (CMA). A set of deep redox and full proteome analyses, plus analysis of autophagy, CMA and ubiquitination with rapamycin and starvation as stimuli confirmed the initial observations and revealed a substantial increase of SNO modifications in nNOS+ cells, in particular targeting protein networks involved in protein catabolism, ubiquitination, carbohydrate metabolism and cell cycle control. Importantly, NO-independent reversible oxidations similarly occurred in both cell lines. Functionally, nNOS caused an accumulation of proteins, including CMA substrates and loss of LAMP2a. UBE2D activity and proteasome activity were impaired, resulting in dysregulations of cell cycle checkpoint proteins. The observed changes of protein degradation pathways caused an expansion of the cytoplasm, large lysosomes, slowing of the cell cycle and suppression of proliferation suggesting a switch of the phenotype towards aging, supported by downregulations of neuronal progenitor markers but increase of senescence-associated proteins. Hence, upregulation of nNOS in neuronal cells imposes aging by SNOing of key players of ubiquitination, chaperones and of substrate proteins leading to interference with crucial steps of protein homeostasis.


Subject(s)
HSC70 Heat-Shock Proteins/metabolism , Nitric Oxide/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Autophagy , Cell Cycle , Cell Line , Cell Proliferation , Cellular Senescence , Cysteine/metabolism , Humans , Lysosomes/metabolism , Molecular Chaperones/metabolism , Oxidation-Reduction/drug effects , Proteome , Proteostasis/drug effects , Sirolimus/pharmacology , Ubiquitination/drug effects
4.
Pain ; 158(7): 1354-1365, 2017 07.
Article in English | MEDLINE | ID: mdl-28394828

ABSTRACT

Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.


Subject(s)
Ganglia, Spinal/metabolism , Inflammation/metabolism , Pain/metabolism , Spinal Cord/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Mice , Mice, Knockout , Proteomics , Reactive Oxygen Species/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction/physiology , rab7 GTP-Binding Proteins
5.
J Proteomics ; 75(13): 3987-4004, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22588120

ABSTRACT

Nitric oxide is a pain signaling molecule and exerts its influence through two primary pathways: by stimulation of soluble guanylylcyclase and by direct S-nitrosylation (SNO) of target proteins. We assessed in the spinal cord the SNO-proteome with two methods, two-dimensional S-nitrosothiol difference gel electrophoresis (2D SNO-DIGE) and SNO-site identification (SNOSID) at baseline and 24h after sciatic nerve injury with/without pretreatment with the nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME). After nerve injury, SNO-DIGE revealed 30 proteins with increased and 23 proteins with decreased S-nitrosylation. SNO-sites were identified for 17 proteins. After sham surgery only 3 proteins were up-nitrosylated. L-NAME pretreatment substantially reduced both constitutive and nerve injury evoked up-S-nitrosylation. For the top candidates S-nitrosylation was confirmed with the biotin switch technique and time course analyses at 1 and 7days showed that SNO modifications of protein disulfide isomerase, glutathione synthase and peroxiredoxin-6 had returned to baseline within 7days whereas S-nitrosylation of mitochondrial aconitase 2 was further increased. The identified SNO modified proteins are involved in mitochondrial function, protein folding and transport, synaptic signaling and redox control. The data show that nitric oxide mediated S-nitrosylation contributes to the nerve injury-evoked pathology in nociceptive signaling pathways.


Subject(s)
S-Nitrosothiols/metabolism , Sciatic Nerve/injuries , Spinal Cord/metabolism , Aconitate Hydratase/metabolism , Animals , Glutathione Synthase/metabolism , Mice , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Oxidation-Reduction , Peroxiredoxin VI/metabolism , Protein Disulfide-Isomerases/metabolism , Proteomics/methods , Signal Transduction/physiology , Two-Dimensional Difference Gel Electrophoresis
6.
Pharmacol Rev ; 63(2): 366-89, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21436345

ABSTRACT

Nitric oxide is generally considered a pronociceptive retrograde transmitter that, by activation of soluble guanylyl cyclase-mediated cGMP production and activation of cGMP-dependent protein kinase, drives nociceptive hypersensitivity. The duality of its functions, however, is increasingly recognized. This review summarizes nitric-oxide-mediated direct S-nitrosylation of target proteins that may modify nociceptive signaling, including glutamate receptors and G-protein-coupled receptors, transient receptor potential channels, voltage-gated channels, proinflammatory enzymes, transcription factors, and redoxins. S-Nitrosylation events require close proximity of nitric oxide production and target proteins and a permissive redox state in the vicinity. Despite the diversity of potential targets and effects, three major schemes arise that may affect nociceptive signaling: 1) S-Nitrosylation-mediated changes of ion channel gating properties, 2) modulation of membrane fusion and fission, and thereby receptor and channel membrane insertion, and 3) modulation of ubiquitination, and thereby protein degradation or transcriptional activity. In addition, S-Nitrosylation may alter the production of nitric oxide itself.


Subject(s)
Nitric Oxide/metabolism , Nociceptors/metabolism , S-Nitrosothiols/metabolism , Animals , Humans , Ion Channel Gating/physiology , Oxidation-Reduction , Pain/physiopathology , Signal Transduction/physiology , Synapses/metabolism , Ubiquitination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL