Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Mamm Res ; 68(3): 417-425, 2023.
Article in English | MEDLINE | ID: mdl-37305813

ABSTRACT

Until now, Molossus melini was known only from its type locality, in the south of Santa Fe province, Argentina. Specimens of this species were collected in 2021 from a roost in a Fraxinus tree of the urban woodland of Paraná city, Entre Ríos province, Argentina. Bat identification was made by comparing external and cranial characters and measurements with those reported in the bibliography and corroborated by a phylogenetic analysis based on the cytochrome b gene. Also, multivariate morphometric analyses showed that cranial measurements, but not external ones, are informative enough to discriminate M. melini from the other Molossus species in Argentina (M. currentium, M. fluminensis, and M. molossus). This new record extends the distribution of M. melini from the south of Santa Fe province by 230 km to the northeast and represents the first record of the species in the Espinal ecoregion. Supplementary information: The online version contains supplementary material available at 10.1007/s13364-023-00679-1.

2.
Front Cell Infect Microbiol ; 12: 897019, 2022.
Article in English | MEDLINE | ID: mdl-35811684

ABSTRACT

Hemolytic uremic syndrome (HUS) is the most common cause of acute renal failure in the pediatric population. The etiology of HUS is linked to Gram-negative, Shiga toxin (Stx)-producing enterohemorrhagic bacterial infections. While the effect of Stx is focused on endothelial damage of renal glomerulus, cytokines induced by Stx or bacterial lipopolysaccharide (LPS) and polymorphonuclear cells (PMNs) are involved in the development of the disease. PMN release neutrophil extracellular traps (NETs) to eliminate pathogens, although NETs favor platelets (Plts) adhesion/thrombus formation and can cause tissue damage within blood vessels. Since thrombus formation and occlusion of vessels are characteristic of HUS, PMN-Plts interaction in the context of Stx may promote netosis and contribute to the endothelial damage observed in HUS. The aim of this study was to determine the relevance of netosis induced by Stx in the context of LPS-sensitized Plts on endothelial damage. We observed that Stx2 induced a marked enhancement of netosis promoted by Plts after LPS stimulation. Several factors seemed to promote this phenomenon. Stx2 itself increased the expression of its receptor on Plts, increasing toxin binding. Stx2 also increased LPS binding to Plts. Moreover, Stx2 amplified LPS induced P-selectin expression on Plts and mixed PMN-Plts aggregates formation, which led to activation of PMN enhancing dramatically NETs formation. Finally, experiments revealed that endothelial cell damage mediated by PMN in the context of Plts treated with LPS and Stx2 was decreased when NETs were disrupted or when mixed aggregate formation was impeded using an anti-P-selectin antibody. Using a murine model of HUS, systemic endothelial damage/dysfunction was decreased when NETs were disrupted, or when Plts were depleted, indicating that the promotion of netosis by Plts in the context of LPS and Stx2 plays a fundamental role in endothelial toxicity. These results provide insights for the first time into the pivotal role of Plts as enhancers of endothelial damage through NETs promotion in the context of Stx and LPS. Consequently, therapies designed to reduce either the formation of PMN-Plts aggregates or NETs formation could lessen the consequences of endothelial damage in HUS.


Subject(s)
Extracellular Traps , Hemolytic-Uremic Syndrome , Thrombosis , Animals , Child , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Humans , Lipopolysaccharides/toxicity , Mice , Shiga Toxin , Thrombosis/complications
3.
Cell Rep ; 33(13): 108547, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33378679

ABSTRACT

Mycobacterium tuberculosis (Mtb) regulates the macrophage metabolic state to thrive in the host, yet the responsible mechanisms remain elusive. Macrophage activation toward the microbicidal (M1) program depends on the HIF-1α-mediated metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we ask whether a tuberculosis (TB) microenvironment changes the M1 macrophage metabolic state. We expose M1 macrophages to the acellular fraction of tuberculous pleural effusions (TB-PEs) and find lower glycolytic activity, accompanied by elevated levels of OXPHOS and bacillary load, compared to controls. The eicosanoid fraction of TB-PE drives these metabolic alterations. HIF-1α stabilization reverts the effect of TB-PE by restoring M1 metabolism. Furthermore, Mtb-infected mice with stabilized HIF-1α display lower bacillary loads and a pronounced M1-like metabolic profile in alveolar macrophages (AMs). Collectively, we demonstrate that lipids from a TB-associated microenvironment alter the M1 macrophage metabolic reprogramming by hampering HIF-1α functions, thereby impairing control of Mtb infection.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipids/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis, Pleural/metabolism , Animals , Bacterial Load , Eicosanoids/pharmacology , Female , Glycolysis/drug effects , Host-Pathogen Interactions , Humans , Macrophage Activation , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Pleural Effusion , Tuberculosis, Pleural/microbiology
4.
J Infect Dis ; 219(11): 1832-1840, 2019 05 05.
Article in English | MEDLINE | ID: mdl-30698699

ABSTRACT

BACKGROUND: Hantavirus pulmonary syndrome (HPS) is caused by Andes virus (ANDV) and related hantaviruses in the Americas. Despite a fatality rate of 40%, the pathogenesis of HPS is poorly understood and factors associated with severity, fatality, and survival remain elusive. METHODS: Ninety-three ANDV-infected HPS patients, of whom 34 had a fatal outcome, were retrospectively studied. Serum levels of cytokines and other inflammation-associated markers were analyzed using multiplex immunoassay and enzyme-linked immunosorbent assay. Associations with disease severity, fatal outcome, and survival were identified using logistic regression. RESULTS: HPS patients exhibited increased serum levels of markers associated with inflammation, intestinal damage, and microbial translocation compared to controls. Patients with fatal outcome displayed higher levels of interleukin (IL) 6, IL-10, interferon-γ, soluble tumor necrosis factor-related apoptosis-inducing ligand, and intestinal fatty acid-binding protein (I-FABP) than survivors. Levels of complement factor 5/5a were higher in survivors compared with fatal cases. IL-6 and I-FABP, the latter a marker for intestinal damage, were by multivariate analyses identified as independent markers associated with disease severity (odds ratio [OR], 2.25; 95% confidence interval [CI], 1.01-5.01) and fatal outcome (OR, 1.64; 95% CI, 1.01-2.64), respectively. CONCLUSIONS: HPS patients displayed a multifaceted, systemic inflammatory response, with IL-6 and I-FABP as independent markers of disease severity and fatality, respectively.


Subject(s)
Biomarkers/metabolism , Hantavirus Pulmonary Syndrome/blood , Hantavirus Pulmonary Syndrome/metabolism , Adult , Cytokines/blood , Cytokines/metabolism , Female , Orthohantavirus/pathogenicity , Humans , Male , Retrospective Studies , Severity of Illness Index
5.
Front Immunol ; 9: 459, 2018.
Article in English | MEDLINE | ID: mdl-29593722

ABSTRACT

The ability of Mycobacterium tuberculosis (Mtb) to persist in its human host relies on numerous immune evasion strategies, such as the deregulation of the lipid metabolism leading to the formation of foamy macrophages (FM). Yet, the specific host factors leading to the foamy phenotype of Mtb-infected macrophages remain unknown. Herein, we aimed to address whether host cytokines contribute to FM formation in the context of Mtb infection. Our approach is based on the use of an acellular fraction of tuberculous pleural effusions (TB-PE) as a physiological source of local factors released during Mtb infection. We found that TB-PE induced FM differentiation as observed by the increase in lipid bodies, intracellular cholesterol, and expression of the scavenger receptor CD36, as well as the enzyme acyl CoA:cholesterol acyl transferase (ACAT). Importantly, interleukin-10 (IL-10) depletion from TB-PE prevented the augmentation of all these parameters. Moreover, we observed a positive correlation between the levels of IL-10 and the number of lipid-laden CD14+ cells among the pleural cells in TB patients, demonstrating that FM differentiation occurs within the pleural environment. Downstream of IL-10 signaling, we noticed that the transcription factor signal transducer and activator of transcription 3 was activated by TB-PE, and its chemical inhibition prevented the accumulation of lipid bodies and ACAT expression in macrophages. In terms of the host immune response, TB-PE-treated macrophages displayed immunosuppressive properties and bore higher bacillary loads. Finally, we confirmed our results using bone marrow-derived macrophage from IL-10-/- mice demonstrating that IL-10 deficiency partially prevented foamy phenotype induction after Mtb lipids exposure. In conclusion, our results evidence a role of IL-10 in promoting the differentiation of FM in the context of Mtb infection, contributing to our understanding of how alterations of the host metabolic factors may favor pathogen persistence.


Subject(s)
Acetyl-CoA C-Acetyltransferase/immunology , Gene Expression Regulation, Enzymologic/immunology , Interleukin-10/immunology , Mycobacterium tuberculosis/immunology , Pleural Effusion/immunology , STAT3 Transcription Factor/immunology , Sterol O-Acyltransferase , Tuberculosis, Pleural/immunology , Up-Regulation/immunology , Acetyl-CoA C-Acetyltransferase/genetics , Animals , Female , Foam Cells , Humans , Interleukin-10/genetics , Male , Mice , Mice, Knockout , Mycobacterium tuberculosis/genetics , Pleural Effusion/genetics , Pleural Effusion/pathology , STAT3 Transcription Factor/genetics , Tuberculosis, Pleural/genetics , Tuberculosis, Pleural/pathology
6.
Am J Respir Crit Care Med ; 197(6): 801-813, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29161093

ABSTRACT

RATIONALE: In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood. OBJECTIVES: To document the role of B cells in TB in an unbiased manner. METHODS: We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB. MEASUREMENTS AND MAIN RESULTS: B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs. CONCLUSIONS: Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.


Subject(s)
B-Lymphocytes/metabolism , Interferon Type I/metabolism , Macrophages/metabolism , Tuberculosis/metabolism , Animals , Disease Models, Animal , Humans , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis , Signal Transduction , Spleen/metabolism , Spleen/microbiology
7.
Immunology ; 151(1): 122-135, 2017 05.
Article in English | MEDLINE | ID: mdl-28106253

ABSTRACT

Beside its key diagnostic value, the humoral immune response is thought to play a protective role in hantavirus pulmonary syndrome. However, little is known about the cell source of these antibodies during ongoing human infection. Herein we characterized B-cell subsets circulating in Andes-virus-infected patients. A notable potent plasmablast (PB) response that increased 100-fold over the baseline levels was observed around 1 week after the onset of symptoms. These PB present a CD3neg CD19low CD20neg CD38hi CD27hi CD138+/- IgA+/- surface phenotype together with the presence of cytoplasmic functional immunoglobulins. They are large lymphocytes (lymphoblasts) morphologically coincident with the 'immunoblast-like' cells that have been previously described during blood cytology examinations of hantavirus-infected patients. Immunoreactivity analysis of white blood cell lysates suggests that some circulating PB are virus-specific but we also observed a significant increase of reactivity against virus-unrelated antigens, which suggests a possible bystander effect by polyclonal B-cell activation. The presence of this large and transient PB response raises the question as to whether these cells might have a protective or pathological role during the ongoing hantavirus pulmonary syndrome and suggest their practical application as a diagnostic/prognostic biomarker.


Subject(s)
B-Lymphocyte Subsets/immunology , Hantavirus Pulmonary Syndrome/immunology , Orthohantavirus/immunology , Plasma Cells/immunology , Precursor Cells, B-Lymphoid/immunology , Acute Disease , Adult , Antibodies, Viral/blood , Antigens, CD/metabolism , Autoantigens/immunology , B-Lymphocyte Subsets/virology , Biomarkers/metabolism , Cell Proliferation , Female , Hantavirus Pulmonary Syndrome/diagnosis , Humans , Immunoglobulin A/metabolism , Lymphocyte Activation , Male , Middle Aged , Plasma Cells/virology , Precursor Cells, B-Lymphoid/virology , Young Adult
8.
Int J Med Microbiol ; 306(7): 541-553, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27394957

ABSTRACT

Tuberculosis (TB) is a complex disease, and the success of the bacterium depends on its ability to evade the immune response. Previously, we determined that Mycobacterium tuberculosis (Mtb) impairs the function of dendritic cells (DC), promoting the generation of cells that are poor stimulators of mycobacterial antigen-specific CD4T cells, which are required to control this persistent infection. In this study, we aimed to determine the mechanisms by which monocyte-derived DCs differentiated in the presence of Mtb (MtbDC) may impact on the proliferation of specific anti-mycobacterial T cells. We found that the presence of Mtb during monocyte-derived DC differentiation favours T helper (Th) 2 and Th17 polarization, in detriment of a Th1 response, compared to DC mature with Mtb. The bias on T cell polarization was associated to the profile of C-type lectin receptors expression found in MtbDC (DC-SIGNlow/MRlow/Dectin-1high). Alternatively, MtbDC release Mtb antigens (Ag) that can be taken up and presented by bystander DC, promoting the proliferation of CD4T cells, but to a lesser extent than direct presentation by Mtb-matured DC. In summary, we have further characterized the generation of MtbDC as an effective evasion strategy driven by the pathogen, leading to the inhibition of Ag-presentation and bias of T cell polarization towards Th2 and Th17 profiles, features which partially explain the persistence of Mtb in the host.


Subject(s)
Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mycobacterium tuberculosis/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Adult , Blood Donors , Cell Proliferation , Healthy Volunteers , Humans , Middle Aged
9.
Clin Sci (Lond) ; 130(4): 259-71, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26582821

ABSTRACT

Secondary infections due to post-sepsis immunosuppression are a major cause of death in patients with sepsis. Repetitive inoculation of increasing doses of lipopolysaccharide (LPS) into mice mimics the immunosuppression associated with sepsis. Myeloid-derived suppressor cells (MDSCs, Gr-1(+) CD11b(+)) are considered a major component of the immunosuppressive network, interfering with T-cell responses in many pathological conditions. We used LPS-immunosuppressed (IS) mice to address whether MDSCs acquired their suppressive ability in the bone marrow (BM) and whether they could migrate to lymph nodes (LNs) to exert their suppressive function. Our results showed that Gr-1(+) CD11b(+) cells of IS mice already had the potential to inhibit T-cell proliferation in the BM. Moreover, soluble factors present in the BM from IS mice were responsible for inducing this inhibitory ability in control BM cells. In addition, migration of Gr-1(+) CD11b(+) to LNs in vivo was maximal when cells obtained from the BM of IS mice were inoculated into an IS context. In this regard, we found chemoattractant activity in cell-free LN extracts (LNEs) from IS mice and an increased expression of the LN-homing chemokine receptor C-C chemokine receptor type 7 (CCR7) in IS BM Gr-1(+) CD11b(+) cells. These results indicate that Gr-1(+) CD11b(+) cells found in BM from IS mice acquire their suppressive activity in the same niche where they are generated, and migrate to LNs to exert their inhibitory role. A better understanding of MDSC generation and/or regulation of factors able to induce their inhibitory function may provide new and more effective tools for the treatment of sepsis-associated immunosuppression.


Subject(s)
Antigens, Ly/immunology , Bone Marrow Cells/immunology , CD11b Antigen/immunology , Chemotaxis/drug effects , Immunocompromised Host , Lipopolysaccharides , Lymph Nodes/immunology , Myeloid Cells/immunology , Sepsis/immunology , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/metabolism , CD11b Antigen/metabolism , Cells, Cultured , Cellular Microenvironment , Coculture Techniques , Disease Models, Animal , Lymph Nodes/metabolism , Lymphocyte Activation , Mice, Inbred BALB C , Myeloid Cells/metabolism , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Sepsis/chemically induced , Sepsis/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
10.
Clin Sci (Lond) ; 129(4): 319-30, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25858460

ABSTRACT

Circulating monocytes (Mo) play an essential role in the host immune response to chronic infections. We previously demonstrated that CD16(pos) Mo were expanded in TB (tuberculosis) patients, correlated with disease severity and were refractory to dendritic cell differentiation. In the present study, we investigated whether human Mo subsets (CD16(neg) and CD16(pos)) differed in their ability to influence the early inflammatory response against Mycobacterium tuberculosis. We first evaluated the capacity of the Mo subsets to migrate and engage a microbicidal response in vitro. Accordingly, CD16(neg) Mo were more prone to migrate in response to different mycobacteria-derived gradients, were more resistant to M. tuberculosis intracellular growth and produced higher reactive oxygen species than their CD16(pos) counterpart. To assess further the functional dichotomy among the human Mo subsets, we carried out an in vivo analysis by adapting a hybrid mouse model (SCID/Beige, where SCID is severe combined immunodeficient) to transfer each Mo subset, track their migratory fate during M. tuberculosis infection, and determine their impact on the host immune response. In M. tuberculosis-infected mice, the adoptively transferred CD16(neg) Mo displayed a higher lung migration index, induced a stronger pulmonary infiltration of murine leucocytes expressing pro- and anti-inflammatory cytokines, and significantly decreased the bacterial burden, in comparison with CD16(pos) Mo. Collectively, our results indicate that human Mo subsets display divergent biological roles in the context of M. tuberculosis infection, a scenario in which CD16(neg) Mo may contribute to the anti-mycobacterial immune response, whereas CD16(pos) Mo might promote microbial resilience, shedding light on a key aspect of the physiopathology of TB disease.


Subject(s)
Lung/immunology , Monocytes/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Animals , Bacterial Load , Cells, Cultured , Chemotaxis, Leukocyte , Disease Models, Animal , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/microbiology , Mice, SCID , Monocytes/classification , Monocytes/metabolism , Monocytes/microbiology , Monocytes/transplantation , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Reactive Oxygen Species/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Respiratory Burst , Time Factors , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/microbiology
11.
Biomed Res Int ; 2014: 741309, 2014.
Article in English | MEDLINE | ID: mdl-25105140

ABSTRACT

Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb), formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM) and from Haarlem (H) lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial/physiology , Immunogenetic Phenomena , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Virulence Factors , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Proteins/biosynthesis , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Biomarkers/blood , Cross Reactions/genetics , Cross Reactions/immunology , Female , Humans , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Proteomics , Tuberculosis, Multidrug-Resistant/blood , Tuberculosis, Multidrug-Resistant/genetics , Tuberculosis, Multidrug-Resistant/immunology , Virulence Factors/biosynthesis , Virulence Factors/genetics , Virulence Factors/immunology
12.
Clin Sci (Lond) ; 127(6): 391-403, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24689690

ABSTRACT

DTH (delayed type hypersensitivity) reactions are secondary cellular immune responses that appear 24-72 h after antigen exposure. Tuberculous pleurisy is a common manifestation of extrapulmonary TB (tuberculosis) and is considered a human model of Th1-mediated DTH. In order to identify functional cross-talk among cellular populations sited in this inflammatory microenvironment, we analysed phenotypic and functional features of human B-cells isolated from the PF (pleural fluid) of TB patients. Freshly isolated PF-B-cells displayed a lower expression of CD20, CD1d and HLA-DR, and a higher expression of CD95, CD38, CD25, CXCR3 (CXC chemokine receptor 3) and CXCR4 (CXC chemokine receptor 4) than their PB (peripheral blood) counterparts, suggesting a non-classical in situ activation. Although memory PF-T-cell frequencies were increased, the frequencies of memory PF-B-cells were not. We demonstrated that, upon stimulation with γ-irradiated M. tuberculosis, mycobacterially secreted proteins or a lectin mitogen, PF-B-cells had a strong activation and produced IL-10 by a mechanism that was dependent on bystander activation of CD19(-) PF cells. Besides, within PF cells, B-cells diminished in vitro M. tuberculosis-induced IFN (interferon)-γ production by T-cells and NK (natural killer) cells in an IL-10-dependent manner. Finally, we found that the lower the frequency of B-cells, the higher the ratio of IFN-γ/IL-10 within PF. Thus our results suggest that B-cells can regulate a human DTH reaction induced by M. tuberculosis.


Subject(s)
B-Lymphocytes/metabolism , Hypersensitivity, Delayed/immunology , Interferon-gamma/biosynthesis , Killer Cells, Natural/metabolism , T-Lymphocytes/metabolism , Tuberculosis, Pleural/microbiology , B-Lymphocytes/immunology , Humans , Immunity, Cellular/immunology , Interleukin-10/immunology , Killer Cells, Natural/immunology , Mycobacterium tuberculosis/immunology , T-Lymphocytes/immunology , Tuberculosis, Pleural/immunology
13.
Clin Sci (Lond) ; 126(5): 355-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24053409

ABSTRACT

Secondary infections due to post-sepsis immunosuppression are a major cause of death in patients with sepsis. Strategies aimed at restoring immune functions offer a new perspective in the treatment of sepsis. In the present study, we used LPS (lipopolysaccharide)-immunosuppressed mice to analyse the effects of ATRA (all-trans retinoic acid) on different immune parameters. The IS (immunocompromised) group had decreased lymphocyte and increased MDSC (myeloid-derived suppressor cell) counts in lymph nodes. They also had an impaired in vitro T-cell proliferation, mediated by MDSCs. ATRA administration restored T-cell proliferation, which was associated with a decreased number of live MDSCs. The IS group treated with ATRA had an increased number of CD4+ and CD8+ T-cells. ATRA partially improved the primary humoral immune response, even when immunosuppression was established first and ATRA was administered subsequently. Our results demonstrate that ATRA restores immunocompetence by modulating the number of leucocytes and the survival of MDSCs, and thus represents an additional potential strategy in the treatment of the immunosuppressive state of sepsis.


Subject(s)
Immunocompetence/drug effects , Immunosuppression Therapy , Lipopolysaccharides/pharmacology , Models, Animal , Tretinoin/pharmacology , Animals , Cell Proliferation/drug effects , Flow Cytometry , Mice , Mice, Inbred BALB C , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
14.
Infect Genet Evol ; 16: 151-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23352891

ABSTRACT

Mycobacterium tuberculosis has a considerable degree of genetic variability resulting in different epidemiology and disease outcomes. We evaluated the pathogen-host cell interaction of two genetically closely-related multidrug-resistant M. tuberculosis strains of the Haarlem family, namely the strain M, responsible for an extensive multidrug-resistant tuberculosis outbreak, and its kin strain 410 which caused a single case in two decades. Intracellular growth and cytokine responses were evaluated in human monocyte-derived macrophages and dU937 macrophage-like cells. In monocyte-derived macrophages, strain M grew more slowly and induced lower levels of TNF-α and IL-10 than 410, contrasting with previous studies with other strains, where a direct correlation was observed between increased intracellular growth and epidemiological success. On the other hand, in dU937 cells, no difference in growth was observed between both strains, and strain M induced significantly higher TNF-α levels than strain 410. We found that both cell models differed critically in the expression of receptors for M. tuberculosis entry, which might explain the different infection outcomes. Our results in monocyte-derived macrophages suggest that strain M relies on a modest replication rate and cytokine induction, keeping a state of quiescence and remaining rather unnoticed by the host. Collectively, our results underscore the impact of M. tuberculosis intra-species variations on the outcome of host cell infection and show that results can differ depending on the in vitro infection model.


Subject(s)
Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Analysis of Variance , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Female , Host-Pathogen Interactions , Humans , Macrophages/cytology , Macrophages/metabolism , Male , Models, Biological , Mycobacterium tuberculosis/pathogenicity
15.
Eur J Immunol ; 43(2): 335-47, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23192690

ABSTRACT

Tuberculosis (TB) is one of the world's most pernicious diseases mainly due to immune evasion strategies displayed by its causative agent Mycobacterium tuberculosis (Mtb). Blood monocytes (Mos) represent an important source of DCs during chronic infections; consequently, the alteration of their differentiation constitutes an escape mechanism leading to mycobacterial persistence. We evaluated whether the CD16(+)/CD16(-) Mo ratio could be associated with the impaired Mo differentiation into DCs found in TB patients. The phenotype and ability to stimulate Mtb-specific memory clones DCs from isolated Mo subsets were assessed. We found that CD16(-) Mos differentiated into CD1a(+) DC-SIGN(high) cells achieving an efficient recall response, while CD16(+) Mos differentiated into a CD1a(-) DC-SIGN(low) population characterized by a poor mycobacterial Ag-presenting capacity. The high and sustained phosphorylated p38 expression observed in CD16(+) Mos was involved in the altered DC profile given that its blockage restored DC phenotype and its activation impaired CD16(-) Mo differentiation. Furthermore, depletion of CD16(+) Mos indeed improved the differentiation of Mos from TB patients toward CD1a(+) DC-SIGN(high) DCs. Therefore, Mos from TB patients are less prone to differentiate into DCs due to their increased proportion of CD16(+) Mos, suggesting that during Mtb infection Mo subsets may have different fates after entering the lungs.


Subject(s)
Dendritic Cells/pathology , Monocytes/pathology , Receptors, IgG/metabolism , Tuberculosis/immunology , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Antigens, CD1/immunology , Antigens, CD1/metabolism , Cell Differentiation/immunology , Dendritic Cells/enzymology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Male , Middle Aged , Monocytes/enzymology , Monocytes/immunology , Monocytes/metabolism , Mycobacterium tuberculosis/immunology , Receptors, IgG/immunology , Signal Transduction/immunology , Signal Transduction/physiology , Tuberculosis/enzymology , Tuberculosis/metabolism , Tuberculosis/microbiology , Young Adult , p38 Mitogen-Activated Protein Kinases/immunology
16.
FEMS Immunol Med Microbiol ; 66(3): 363-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22889125

ABSTRACT

Some multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) genotypes are the cause of large outbreaks, including strain M identified in Argentina. In contrast, its kin strain 410 has only caused a single case to date. Cell wall antigens from Mtb were associated with the modulation of macrophage (MΦ) cell death, and the ability to inhibit of MΦ apoptosis is considered a virulence mechanism. In this study, the ability these two clinical isolates with divergent epidemiology to induce MΦ cell death was evaluated using whole inactivated bacteria. We showed that gamma-irradiated (I-) strains induced MΦ necrosis, the strongest inducer being I-410. Cell death biased towards apoptosis with the heat-killed (hk) strains, both hk-MDR strains being poorer inducers of MΦ apoptosis than was H37Rv. These effects were partly due to their ability to induce anti-apoptotic mechanisms which were not related to the lack of tumor necrosis factor alpha induction or a compensatory effect of interleukin-10. The most noticeable difference between strain M and strain 410 was the ability shown by hk-M to interfere with apoptosis induced by hk-H37Rv. Thus, heat-stable and heat-labile antigens from these epidemiologically divergent Mtb strains differ in their ability to manipulate MΦ death.


Subject(s)
Antigens, Bacterial/immunology , Cell Death , Drug Resistance, Multiple, Bacterial , Macrophages/immunology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/immunology , Argentina , Cells, Cultured , Humans , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology
17.
PLoS Pathog ; 8(3): e1002632, 2012.
Article in English | MEDLINE | ID: mdl-22479186

ABSTRACT

The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS.


Subject(s)
Astrocytes/drug effects , Endothelium, Vascular/drug effects , Lipopolysaccharides/pharmacology , Shiga Toxin 1/toxicity , Tumor Necrosis Factor-alpha/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Blood-Brain Barrier , Brain/blood supply , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Rats
18.
Clin Immunol ; 141(3): 357-64, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21996454

ABSTRACT

Peripheral blood mononuclear cells with T(FH) phenotype from two asymptomatic XLP patients were studied. Normal/high numbers of CXCR5+, CD4+ T cells coexpressing PD-1 were demonstrated. Peripheral blood mononuclear cells (PBMC) from these patients responded to sub-optimal PHA/IL-2 stimulation upregulating ICOS and CD40L and increasing intracellular expression of IL-10, IL-21 and IL-4 by CD4+ T(FH) cells. However when compared to N, the time profile of activation and cytokine synthesis was different in XLP and N. While ICOS and CD40L expression in N decreased after 6-8 days, it continued to increase or was maintained in XLP cultures. Intracellular IL-10, IL-21 and IL-4 reached higher values in XLP than N after 8 days. Rather than the absence of T(FH) cells or their intrinsic inability to respond to stimuli, differences in the time profile of their response could contribute to impair their role as helpers of B lymphocytes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Intracellular Signaling Peptides and Proteins/immunology , Lymphoproliferative Disorders/immunology , Adult , CD4-Positive T-Lymphocytes/drug effects , CD40 Ligand/biosynthesis , CD40 Ligand/immunology , Cells, Cultured , Exons , Humans , Immunoglobulins, Intravenous/therapeutic use , Inducible T-Cell Co-Stimulator Protein/biosynthesis , Inducible T-Cell Co-Stimulator Protein/immunology , Interleukin-2/immunology , Interleukin-2/pharmacology , Interleukins/immunology , Interleukins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Leukocytes, Mononuclear/immunology , Lymphoproliferative Disorders/drug therapy , Lymphoproliferative Disorders/genetics , Middle Aged , Mutation , Phytohemagglutinins/immunology , Phytohemagglutinins/pharmacology , Signaling Lymphocytic Activation Molecule Associated Protein , T-Lymphocytes, Helper-Inducer/immunology , Up-Regulation/immunology
19.
J Leukoc Biol ; 90(1): 69-75, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21454357

ABSTRACT

The role of CD16(-) and CD16(+) Mo subsets in human TB remains unknown. Our aim was to characterize Mo subsets from TB patients and to assess whether the inflammatory milieu from TB pleurisy modulate their phenotype and recruitment. We found an expansion of peripheral CD16(+) Mo that correlated with disease severity and with TNF-α plasma levels. Circulating Mo from TB patients are activated, showing a higher CD14, CD16, and CD11b expression and Mtb binding than HS. Both subsets coexpressed CCR2/CCR5, showing a potential ability to migrate to the inflammatory site. In tuberculous PF, the CD16(+) subset was the main Mo/MΦ population, accumulation that can be favored by the induction of CD16 expression in CD16(-) Mo triggered by soluble factors found in this inflammatory milieu. CD16(+) Mo in PF were characterized by a high density of receptors for Mtb recognition (DC-SIGN, MR, CD11b) and for lipid-antigens presentation (CD1b), allowing them to induce a successful, specific T cell proliferation response. Hence, in tuberculous PF, CD16(+) Mo constitute the main APC population; whereas in PB, their predominance is associated with the severity of pulmonary TB, suggesting a paradoxical role of the CD16(+) Mo subset that depends on the cellular localization.


Subject(s)
Monocytes/immunology , Receptors, CCR2/analysis , Receptors, CCR5/analysis , Receptors, IgG/analysis , Tuberculosis, Pleural/immunology , Tuberculosis/immunology , Adult , Aged , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Cell Separation , Cytokines/analysis , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , GPI-Linked Proteins/analysis , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Male , Middle Aged , Monocytes/metabolism , Pleural Effusion/immunology , Pleural Effusion/metabolism , Receptors, CCR2/immunology , Receptors, CCR2/metabolism , Receptors, CCR5/immunology , Receptors, CCR5/metabolism , Receptors, IgG/immunology , Receptors, IgG/metabolism , Tuberculosis/metabolism , Tuberculosis, Pleural/metabolism
20.
Immunol Cell Biol ; 88(7): 716-26, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20212510

ABSTRACT

During a chronic infection such as tuberculosis, the pool of tissue dendritic cells (DC) must be renewed by recruitment of both circulating DC progenitors and monocytes (Mo). However, the microenvironment of the inflammatory site affects Mo differentiation. As DC are critical for initiating a Mycobacterium tuberculosis-specific T-cell response, we argue that interference of M. tuberculosis with a correct DC generation would signify a mechanism of immune evasion. In this study, we showed that early interaction of γ-irradiated M. tuberculosis with Mo subverts DC differentiation in vitro. We found that irradiated M. tuberculosis effect involves (1) the loss of a significant fraction of monocyte population and (2) an altered differentiation process of the surviving monocyte subpopulation. Moreover, in the absence of irradiated M. tuberculosis, DC consist in a major DC-specific intercellular adhesion molecule 3-grabbing non-integrin receptor (DC-SIGN(high))/CD86(low) and minor DC-SIGN(low)/CD86(high) subpopulations, whereas in the presence of bacteria, there is an enrichment of DC-SIGN(low)/CD86(high) population. Besides, this population enlarged by irradiated M. tuberculosis, which is characterized by a reduced CD1b expression, correlates with a reduced induction of specific T-lymphocyte proliferation. The loss of CD1molecules partially involves toll-like receptors (TLR-2)/p38 MAPK activation. Finally, several features of Mo, which have been differentiated into DC in the presence of irradiated M. tuberculosis, resemble the features of DC obtained from patients with active tuberculosis. In conclusion, we suggest that M. tuberculosis escapes from acquired immune response in tuberculosis may be caused by an altered differentiation into DC leading to a poor M. tuberculosis-specific T-cell response.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/microbiology , Adult , Antigens, CD1/metabolism , B7-2 Antigen/metabolism , Cell Adhesion Molecules/metabolism , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , Humans , Interleukin-10/metabolism , Lectins, C-Type/metabolism , Lymphocyte Culture Test, Mixed , Macrophages/immunology , Mannose Receptor , Mannose-Binding Lectins/metabolism , Middle Aged , Mycobacterium tuberculosis/pathogenicity , Receptors, Cell Surface/metabolism , Toll-Like Receptor 2/metabolism , Tuberculosis/immunology , Tuberculosis/physiopathology , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL