Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Sci Total Environ ; 922: 171425, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432384

ABSTRACT

Conventional soil management in agricultural areas may expose non-target organisms living nearby to several types of contaminants. In this study, the effects of soil management in extensive pasture (EP), intensive pasture (IP), and sugarcane crops (C) were evaluated in a realistic-field-scale study. Thirteen aquatic mesocosms embedded in EP, IP, and C treatments were monitored over 392 days. The recommended management for each of the areas was simulated, such as tillage, fertilizer, pesticides (i.e. 2,4-D, fipronil) and vinasse application, and cattle pasture. To access the potential toxic effects that the different steps of soil management in these areas may cause, the cladoceran Ceriophania silvestrii was used as aquatic bioindicator, the dicot Eruca sativa as phytotoxicity bioindicator in water, and the dipteran Chironomus sancticaroli as sediment bioindicator. Generalized linear mixed models were used to identify differences between the treatments. Low concentrations of 2,4-D (<97 µg L-1) and fipronil (<0.21 µg L-1) in water were able to alter fecundity, female survival, and the intrinsic rate of population increase of C. silvestrii in IP and C treatments. Similarly, the dicot E. sativa had germination, shoot and root growth affected mainly by 2,4-D concentrations in the water. For C. sancticarolli, larval development was affected by the presence of fipronil (<402.6 ng g-1). The acidic pH (below 5) reduced the fecundity and female survival of C. silvestrii and affected the germination and growth of E. sativa. Fecundity and female survival of C. silvestrii decrease in the presence of phosphorus-containing elements. The outcomes of this study may improve our understanding of the consequences of exposure of freshwater biota to complex stressors in an environment that is rapidly and constantly changing.


Subject(s)
Pesticides , Saccharum , Water Pollutants, Chemical , Female , Animals , Cattle , Pesticides/toxicity , Environmental Biomarkers , Soil , Water/chemistry , 2,4-Dichlorophenoxyacetic Acid/toxicity , Water Pollutants, Chemical/toxicity
2.
Environ Pollut ; 332: 121943, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37301461

ABSTRACT

Seventy-three percent of aerial insectivore species of birds breeding in North America have declined in the past five years. This decline is even greater in migratory insectivorous species, which face stressors in both their breeding and non-breeding ranges. The Purple Martin (Progne subis) is an aerial insectivore swallow that overwinters in South America and migrates to North America to breed. Purple Martin populations have declined by an estimated 25% since 1966. The eastern subspecies (P. subis subis) has declined the most and overwinters in the Amazon Basin, a region rich in environmental mercury (Hg) contamination. Previous studies reported elevated levels of Hg in feathers of this subspecies, which correlated negatively with body mass and fat reserves. Given the propensity of Hg to disrupt the endocrine system, and the role of thyroid hormones in regulating fat metabolism, this study quantifies concentrations of Hg and the thyroid hormone triiodothyronine (T3) in the feathers of P. subis subis. To our knowledge, this is the first study to extract and quantify T3 in feathers; thus, we developed, tested, and optimized a method for extracting T3 from feather tissue and validated an enzyme immunoassay (EIA) to quantify T3 in Purple Martin feathers. The developed method yielded acceptable results for both parallelism and accuracy. The observed T3 concentrations were statistically modeled along with total Hg (THg) concentrations, but these variables were not significantly correlated. This suggests that the observed variation in THg concentration may be insufficient to cause a discernible change in T3 concentration. Furthermore, the observed effect of breeding location on feather T3 concentration might have obscured any effect of Hg.


Subject(s)
Mercury , Swallows , Animals , Feathers/chemistry , Triiodothyronine , Ecotoxicology , Mercury/analysis , Environmental Monitoring
3.
Environ Sci Pollut Res Int ; 30(8): 21010-21024, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36264462

ABSTRACT

This study evaluated the effects of environmental contamination caused by pasture intensification and pasture-sugarcane conversion on oxidative stress, biotransformation, esterase enzymes, and development of Scinax fuscovarious and Physalaemus nattereri. Tadpoles were exposed in mesocosms allocated in three treatments: (1) untreated extensive pasture (EP); (2) intensive-pasture conversion (IP) (2,4-D herbicide + fertilizers); and (3) pasture-sugarcane conversion (SC) (fipronil + 2,4-D + fertilizers). After 7 days of exposure, IP reduced catalase (CAT) and increased malondialdehyde (MDA) levels in P. nattereri, while this treatment decreased glucose-6-phosphate dehydrogenase (G6PDH) and CAT activities in S. fuscovarious. SC decreased CAT, G6PDH, and glutathione S-transferase (GST) activities in P. nattereri. In S. fuscovarius, SC reduced G6PDH, acetylcholinesterase (AChE), and carboxylesterase (CbE) activities. MDA was raised in both tadpole species exposed to SC, evidencing oxidative stress. Integrated biomarker responses showed higher scores in both species exposed to SC. Our results warn that management practices currently applied to sugarcane cultivation in Brazil can negatively impact the functional responses of amphibians at natural systems.


Subject(s)
Saccharum , Water Pollutants, Chemical , Animals , Larva , Acetylcholinesterase/metabolism , Saccharum/metabolism , Brazil , Fertilizers , Catalase/metabolism , Anura , 2,4-Dichlorophenoxyacetic Acid/metabolism , Glutathione Transferase/metabolism , Water Pollutants, Chemical/metabolism
4.
Sci Total Environ ; 857(Pt 3): 159643, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36306835

ABSTRACT

Sugarcane management practices include the application of pesticides, including the herbicide 2,4-D and the insecticide fipronil. In addition, a by-product from the ethanol industry, called vinasse, is commonly applied to fertilize sugarcane areas. The potential risks of these practices to the edge-of-field aquatic ecosystems were assessed in the present study. This was done by contaminating mesocosms with (single and mixtures of) both pesticides and vinasse and evaluating the effects on the midge Chironomus sancticaroli through in-situ and laboratory bioassays. To this end, outdoor mesocosms were treated with fipronil (F), 2,4-D (D), and vinasse (V) alone and with the mixture of fipronil and 2,4-D (M), as well as with both pesticides and vinasse (MV). C. sancticaroli was deployed in mesocosms before contamination in cages, which were taken out 4- and 8-days-post-contamination. Water and sediment samples were also taken for laboratory bioassays on the first day of contamination, as well as 7-, 14-, 21-, 30-, 45-, and 75-days post-contamination. The responses assessed in subchronic assays (8-day) were survival, growth, head capsule width, development, and mentum deformities. Low survival occurred in the in-situ experiments of all treatments due to the low oxygen levels. In the laboratory tests, effects on survival occurred for F, V, and M over time after exposure to both water and sediment. All organisms died post-exposure to water samples from the MV treatment, even 75-days-post-contamination. Impairments in body length and head capsule width occurred for F, V, and M for water and F, V, M, and MV for sediment samples over time. All treatments increased mentum deformities in exposed larvae for any of the sampling periods. The negative effects observed were more significant in the mixture mesocosms (M and MV), thus indicating increased risks from management practices applying these compounds together or with a short time interval in crops.


Subject(s)
Chironomidae , Pesticides , Saccharum , Water Pollutants, Chemical , Animals , Ecosystem , Water , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , 2,4-Dichlorophenoxyacetic Acid/toxicity
5.
Environ Pollut, v. 332, 121943, set. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4943

ABSTRACT

Seventy-three percent of aerial insectivore species of birds breeding in North America have declined in the past five years. This decline is even greater in migratory insectivorous species, which face stressors in both their breeding and non-breeding ranges. The Purple Martin (Progne subis) is an aerial insectivore swallow that overwinters in South America and migrates to North America to breed. Purple Martin populations have declined by an estimated 25% since 1966. The eastern subspecies (P. subis subis) has declined the most and overwinters in the Amazon Basin, a region rich in environmental mercury (Hg) contamination. Previous studies reported elevated levels of Hg in feathers of this subspecies, which correlated negatively with body mass and fat reserves. Given the propensity of Hg to disrupt the endocrine system, and the role of thyroid hormones in regulating fat metabolism, this study quantifies concentrations of Hg and the thyroid hormone triiodothyronine (T3) in the feathers of P. subis subis. To our knowledge, this is the first study to extract and quantify T3 in feathers; thus, we developed, tested, and optimized a method for extracting T3 from feather tissue and validated an enzyme immunoassay (EIA) to quantify T3 in Purple Martin feathers. The developed method yielded acceptable results for both parallelism and accuracy. The observed T3 concentrations were statistically modeled along with total Hg (THg) concentrations, but these variables were not significantly correlated. This suggests that the observed variation in THg concentration may be insufficient to cause a discernible change in T3 concentration. Furthermore, the observed effect of breeding location on feather T3 concentration might have obscured any effect of Hg.

6.
Environ Pollut ; 314: 120284, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36206890

ABSTRACT

Purple Martins (Progne subis) are migratory birds that breed in North America and overwinter and complete their molt in South America. Many of the breeding populations are declining. The eastern North American subspecies of Purple Martin (P. subis subis) comprises >90% of all Purple Martins. This subspecies overwinters and molts in the Amazon Basin, a region that is high in mercury (Hg) contamination, which raises the possibility that observed declines in Purple Martins could be linked to Hg exposure. Exposure to Hg results in numerous and systemic negative health outcomes, including endocrine disruption. Corticosterone (CORT) is a primary modulator of the stress and metabolic axes of vertebrates; thus, it is important in meeting metabolic and other challenges of migration. Because feathers accumulate Hg and hormones while growing, quantification of Hg and CORT in feathers provides an opportunity to retrospectively assess Hg exposure and adrenal activity of birds using minimally invasive methods. We evaluated interrelationships among concentrations of total Hg (THg) and CORT in feathers that grew in the Amazon Basin and body condition (mass, fat score) of these birds in North America. Concentrations of THg in Purple Martin feathers ranged from 1.103 to 8.740 µg/g dw, levels associated with negative physiological impacts in other avian species. Concentrations of CORT did not correlate with THg concentration at the time of feather growth. However, we found evidence that THg concentration may negatively impact the ability of Purple Martins to accumulate fat, which could impair migratory performance and survivorship due to the high energy requirements of migration. This finding suggests potential carryover effects of Hg contamination at the wintering grounds in the Amazon to the summer breeding grounds in North America.


Subject(s)
Mercury , Swallows , Animals , Feathers/metabolism , Mercury/metabolism , Corticosterone/metabolism , Retrospective Studies
7.
Sci Total Environ ; 844: 157238, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35810907

ABSTRACT

Tropical streams have been intensively impacted by agricultural activities. Among the most important agricultural activities in Brazil, sugarcane production represents a large impact for economic development and for environmental conditions. Permeating sugarcane fields, several headwater streams can be affected by sugarcane cultivation, in special, aquatic biogeochemical cycles because of the deforestation, fertilization, crop residues and higher temperatures in the tropics. In this study, we analyzed the effects of sugarcane cultivation on methane fluxes and concentrations, assuming that carbon cycles are influenced by agricultural activities in headwater streams. Our study aimed to (1) measure methane fluxes and concentrations in tropical streams located in Southeastern Brazil, (2) Analyze whether seasonal cycles influence methane fluxes and concentrations, (3) Evaluate the influence of sugarcane cultivation on methane fluxes and (4) Analyze the association between water chemistry in the methane concentrations in tropical streams. We found mean fluxes of CH4 of 0.280 mmol m-2 d-1, with higher fluxes during the summer and in streams draining preserved catchments. The average CH4 concentrations were 0.695 µmol L-1, with higher values during the summer and in streams draining preserved catchments. Methane concentrations in the studied streams was influenced by dissolved oxygen (negatively), dissolved organic carbon (negatively), water velocity (positively) and conductivity (negatively). Methane concentrations were significantly higher than concentrations found in Temperate Grasslands, Savannas & Shrublands and similar to concentrations found in other tropical biomes (excluding Tropical & Subtropical Moist Broadleaf Forests which receives large amounts of organic inputs). We conclude that sugarcane influence methane concentrations and fluxes in tropical streams by reducing the organic matter availability provided by the native vegetation in soil and water.


Subject(s)
Methane , Rivers , Agriculture , Carbon Dioxide , Forests , Rivers/chemistry , Water
8.
Environ Pollut ; 299: 118894, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35085654

ABSTRACT

Expansion of sugarcane crops may have contributed to the increased contamination of native habitats in Brazil. Several species of amphibians inhabit ponds formed in flooded farmlands, where pesticide concentrations are usually high. This study evaluated the ecotoxicological effects of the sugarcane pesticides fipronil and 2,4-D, as well as the fertilizer vinasse (isolated and mixed), on physiological responses of Leptodactylus fuscus and Lithobates catesbeianus tadpoles. In situ assays were conducted in mesocosms with concentrations based on the doses recommended by the manufacturer. Vinasse (1.3% dilution) caused 100% tadpoles' mortality immediately after its application. Fipronil and/or 2,4-D altered antioxidant and biotransformation responses, induced neurotoxicity and changed lipid contents in tadpoles. A multivariate approach indicated that the mixture of pesticides induced most of the sublethal effects in both tadpole species, in addition to the isolated fipronil in L. fuscus. Fipronil alone increased glucose-6-phosphate dehydrogenase (G6PDH) activity, decreased acetylcholinesterase (AChE) and total lipid contents, and altered some individual lipid classes (e.g., free fatty acids and acetone-mobile polar lipids) in L. fuscus. The interaction between fipronil and 2,4-D in this species were more evident for lipid contents, although enzymatic alterations in G6PDH, AChE and glutathione-S-transferase (GST) were also observed. In L. catesbeianus, the mixture of pesticides reduced triglycerides and total lipids, as well as increased GST and decreased AChE activities. The detoxifying enzyme carboxylesterase was reduced by 2,4-D (alone or in mixture) in both species. Isolated pesticides also modulated specific lipid classes, suggesting their disruptive action on energy metabolism of tadpoles. Our study showed that fipronil, 2,4-D, and vinasse, individually or mixed, can be harmful to amphibians during their larval phase, causing mortality or impairing their functional responses.


Subject(s)
Acetylcholinesterase , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid/toxicity , Acetylcholinesterase/metabolism , Animals , Larva , Pyrazoles , Water Pollutants, Chemical/metabolism
9.
Zootaxa ; 5223(1): 1-149, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-37044499

ABSTRACT

Amazonian lowland rainforests epitomize, as few other biomes, the terrestrial and freshwater biological diversity of our planet. We provide here a comprehensive description of the larval anurans of Central Amazonia, and their natural history. We base our analyses on fieldwork conducted in six terra-firme rainforest and two várzea floodplain sites during ~60 months between 1990 and 2013, complemented with an examination of museum specimens and a review of published literature. Ninety-nine species of anurans are known to occur in Central Amazonia. Of these, 84 species (85%) have a free-swimming exotrophic larva, six species (6%) have a terrestrial endotrophic larva, one species has a terrestrial exotrophic larva (1%) and another seven species (7%) have direct development of eggs into froglets. The life cycle of one species (1%) remains unknown. We formally describe and illustrate the larval stage of 68 species (i.e., 75% of the species with a known larval stage), five of them previously unkown and nineteen never described for Central Amazonia. We compile, review and update information on species natural history including reproductive modes, habitat use, phenology, and species interactions including diet, predators, competitors and parasites. Finally, we assessed the ecomorphological diversity in the region by the application of a system inspired in Altig & Johnston (1989), later updated by Altig & McDiarmid (1999), which recognizes tadpole guilds based on a combination of morphological and natural history data. Basic scientific information presented in this monograph provide the essential background for further studies on the ecological and evolutionary forces shaping anuran Amazonian assemblages, and their conservation.


Subject(s)
Anura , Ecosystem , Animals , Larva/anatomy & histology , Life Cycle Stages , Reproduction
10.
Environ Pollut, v. 314, 120284, dez. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4558

ABSTRACT

Purple Martins (Progne subis) are migratory birds that breed in North America and overwinter and complete their molt in South America. Many of the breeding populations are declining. The eastern North American subspecies of Purple Martin (P. subis subis) comprises >90% of all Purple Martins. This subspecies overwinters and molts in the Amazon Basin, a region that is high in mercury (Hg) contamination, which raises the possibility that observed declines in Purple Martins could be linked to Hg exposure. Exposure to Hg results in numerous and systemic negative health outcomes, including endocrine disruption. Corticosterone (CORT) is a primary modulator of the stress and metabolic axes of vertebrates; thus, it is important in meeting metabolic and other challenges of migration. Because feathers accumulate Hg and hormones while growing, quantification of Hg and CORT in feathers provides an opportunity to retrospectively assess Hg exposure and adrenal activity of birds using minimally invasive methods. We evaluated interrelationships among concentrations of total Hg (THg) and CORT in feathers that grew in the Amazon Basin and body condition (mass, fat score) of these birds in North America. Concentrations of THg in Purple Martin feathers ranged from 1.103 to 8.740 μg/g dw, levels associated with negative physiological impacts in other avian species. Concentrations of CORT did not correlate with THg concentration at the time of feather growth. However, we found evidence that THg concentration may negatively impact the ability of Purple Martins to accumulate fat, which could impair migratory performance and survivorship due to the high energy requirements of migration. This finding suggests potential carryover effects of Hg contamination at the wintering grounds in the Amazon to the summer breeding grounds in North America.

11.
Aquat Toxicol ; 241: 106017, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773901

ABSTRACT

With the growing use of agrochemicals in Brazil, there is also a growing need for more realistic toxicity assessments that aid in understanding the potential risks of environmental-realistic agrochemical (mixture) exposures in the natural ecosystems. The aim of the present study was therefore to evaluate the lethal and sublethal effects of environmental realistic (single and mixture) concentrations of the pesticides DMA® 806 BR (active ingredient - a.i. 2,4-D) and Regent® 800 WG (a.i. fipronil) and sugarcane vinasse to the Neotropical cladoceran Ceriodaphnia silvestrii. This evaluation was carried out through lethal (survival), sublethal (reproduction and intrinsic rates of population increase - r) and post-exposure (feeding rate and also reproduction) tests conducted in situ and with water from mesocosms contaminated with the recommended doses of these compounds. The results showed high acute toxicity for treatments containing fipronil and vinasse when acting in isolation, with survival rates only returning to control values on the last sampling day (75 days post application). Reproduction of surviving cladocerans was reduced in all treatments until the end of the experiment and were potentiated effect in the mixture of the three test compounds. The intrinsic rates of population increase were reduced in all treatments except the single 2,4-D treatment. Post-exposure feeding rate and reproduction, however, were not impaired under the conditions analyzed. The results show the high toxicity of recommended doses of fipronil and vinasse (and especially their mixture) and the importance of evaluating the risks of agrochemical mixtures at environmental-realistic concentrations.


Subject(s)
Cladocera , Pesticides , Saccharum , Water Pollutants, Chemical , Animals , Ecosystem , Water Pollutants, Chemical/toxicity
12.
Ecology ; 102(11): e03500, 2021 11.
Article in English | MEDLINE | ID: mdl-34314027

ABSTRACT

Current conceptual metacommunity models predict that the consequences of local selective pressures on community structure increase with spatial isolation when species favored by local conditions also have higher dispersal rates. This appears to be the case of freshwater insects in the presence of fish. The introduction of predatory fish can produce trophic cascades in freshwater habitats because fish tend to prey upon intermediate predatory taxa, such as predatory insects, indirectly benefiting herbivores and detritivores. Similarly, spatial isolation can limit dispersal and colonization rates of predatory insects more strongly than of herbivores and detritivores, thus generating similar cascading effects. Here we tested the hypothesis that the effect of introduced predatory fish on insect community structure increases with spatial isolation by conducting a field experiment in artificial ponds that manipulated the presence/absence of fish (the redbreast tilapia) at three different distances from a source wetland. Our results showed that fish have direct negative effects on the abundance of predatory insects but probably have variable net effects on the abundance of herbivores and detritivores because the direct negative effects of predation by fish may offset indirect positive ones. Spatial isolation also resulted in indirect positive effects on the abundance of herbivores and detritivores but this effect was stronger in the absence rather than in the presence of fish so that insect communities diverged more strongly between fish and fishless ponds at higher spatial isolation. We argue that an important additional mechanism, ignored in our initial hypothesis, was that as spatial isolation increases fish predation pressure upon herbivores and detritivores increases due to the relative scarcity of predatory insects, thus dampening the positive effect that spatial isolation confers to lower trophic levels. Our results highlight the importance of considering interspecific variation in dispersal and multiple trophic levels to better understand the processes generating community and metacommunity patterns.


Subject(s)
Food Chain , Predatory Behavior , Animals , Ecosystem , Fresh Water , Insecta
13.
Aquat Toxicol ; 231: 105712, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340833

ABSTRACT

Sugarcane crops management in Brazil includes the use of pesticides, as well as alternative organic fertilizers such as vinasse obtained from waste of the ethanol industry. In order to assess the effects of the environmental contamination generated by such sugarcane practices, this study was aimed to investigate the effects of the pesticides 2,4-Dichlorophenoxyacetic acid (2,4-D) and fipronil, as well as vinasse, on the survival, behavior, and reproduction of the native epibenthic macroinvertebrate Hyalella meinerti through in situ and laboratory experiments. In situ assays were conducted in mesocosms with six treatments, i.e. untreated control, 2,4-D, fipronil, and vinasse, the mixture of the two pesticides, and both pesticides mixed with vinasse. Survival, swimming behavior, and reproduction were evaluated over time post contamination, from 0-96 h (T1) and 7-14 days (T2) through in situ experiments and 30-44 days (T3) and 75-89 days (T4) post contamination by laboratory bioassays with mesocosm water. In the T1 period, survival of H. meinerti was registered only in controls and mesocosms treated with 2,4-D. In the T2 period, treatments containing fipronil and vinasse (isolated or in both mixture treatments) still caused 100 % of mortality. Survival was recorded only in 2,4-D and control treatments, whereas reproduction only occurred in the control. In the T3 period, no survival occurred to fipronil and both mixture treatments. Vinasse and 2,4-D decreased total reproduction in comparison to control. In the T4 period, amphipods survival was detected when exposed to fipronil and its mixture with 2,4-D. However, these same treatments decreased the amplexus rates and total reproduction, with synergism denoted for the pesticide mixture. The swimming activity of males, females, and couples was decreased in surviving organisms exposed to 2,4-D, fipronil, vinasse, and the mixture of pesticides along all experimental periods. Our study showed that the application of fipronil, 2,4-D, and vinasse isolated or mixed at realistic concentrations of actual sugarcane management practices may negatively impact functional responses of indigenous amphipods in natural aquatic systems.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Amphipoda/physiology , Environmental Exposure , Pyrazoles/toxicity , Waste Products , Amphipoda/drug effects , Animals , Behavior, Animal/drug effects , Brazil , Female , Male , Pesticides/analysis , Reproduction/drug effects , Survival Analysis , Swimming , Water Pollutants, Chemical/toxicity , Water Quality
14.
Ecotoxicology ; 29(9): 1516-1521, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32638180

ABSTRACT

Despite the higher diversity of amphibians and the increasing use of agrochemicals in tropical countries, knowledge on the ecotoxicity of such compounds to tropical amphibians remains very limited. The aim of this study was, therefore, to assess the acute lethal toxicity of three nitrogen salts (ammonium sulphate, sodium nitrate and sodium nitrite) to tadpoles of five tropical frog species: Rhinella ornata, Boana faber, B. pardalis, Physalaemus cuvieri, and P. olfersii. The order of sensitivity to the nitrogen salts for all five species was sodium nitrite > ammonium sulphate > sodium nitrate. There was not a single most sensitive species to all three nitrogen salts. However, differences in generated 4-d LC50 values between the most and least sensitive test species were small (a factor 2 to 6). A comparison with published toxicity values does not suggest an intrinsic higher, or lower, sensitivity of the tropical species tested as compared to their temperate counterparts. Reported nitrogen concentrations in sugarcane fields do not indicate a lethal risk to the amphibian species tested. Chronic-exposure and field studies are recommended to evaluate amphibian sensitivity under environmental-realistic multiple-stressor conditions.


Subject(s)
Ammonium Compounds/toxicity , Amphibians/physiology , Nitrates/toxicity , Nitrites/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anura , Ecosystem , Larva , Toxicity Tests, Acute
15.
Ecotoxicology ; 29(7): 1043-1051, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32405782

ABSTRACT

The increasing demand for biofuels favored the expansion of sugarcane and, as a consequence, in the consumption of pesticides in Brazil. Amphibians are subject to pesticide exposure for occurring in or around sugarcane fields, and for breeding at the onset of the rainy season when pesticide consumption is common. We tested the hypothesis that herbicides used in sugarcane crops, although employed for weed control and manipulated at doses recommended by the manufacturers, can cause lethal and sublethal effects on amphibian larvae. Boana pardalis was exposed to glyphosate, ametryn, 2,4-D, metribuzin and acetochlor which account to up to 2/3 of the volume of herbicides employed in sugarcane production. High mortality was observed following prolonged exposure to ametryn (76%), acetochlor (68%) and glyphosate (15%); ametryn in addition significantly reduced activity rates and slowed developmental and growth rates. AChE activity was surprisingly stimulated by glyphosate, ametryn and 2,4-D, and GST activity by ametryn and acetochlor. Some of these sublethal effects, including the decrease in activity, growth and developmental rates, may have important consequences for individual performance for extending the larval period, and hence the risk of dessication, in the temporary and semi-permanent ponds where the species develops. Future studies should seek additional realism towards a risk analysis of the environmental contamination by herbicides through experiments manipulating not only active ingredients but also commercial formulations, as well as interactions among contaminants and other environmental stressors across the entire life cycle of native amphibian species.


Subject(s)
Anura , Crop Protection , Herbicides/toxicity , Saccharum/growth & development , Animals , Anura/growth & development , Brazil , Crops, Agricultural/growth & development , Larva/drug effects , Larva/growth & development
16.
Ecotoxicol Environ Saf ; 182: 109446, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31323523

ABSTRACT

Increased use of sugarcane pesticides and their destination to non-target environments in Brazil has generated concerns related to the conservation of more vulnerable groups, such as amphibians. Besides the high skin permeability, tadpoles are constantly restricted to small and ephemeral ponds, where exposure to high concentrations of pesticides in agricultural areas is inevitable. This study evaluated chronic effects caused by sub-lethal concentrations of 2,4-dichlorophenoxyacetic acid herbicide on energy storage, development, respiration rates, swimming performance and avoidance behavior of bullfrog tadpoles (Lithobates catesbeianus). Firstly, we conducted acute toxicity test (96 h) to estipulate sub-lethal concentrations of 2,4-D and evaluate the sensitivity of three tadpoles' species to this herbicide. Results showed that Leptodactylus fuscus presented the lowest LC50 96 h, 28.81 mg/L, followed by Physalaemus nattereri (143.08 mg/L) and L. catesbeianus (574.52 mg/L). Chronic exposure to 2,4-D (125, 250 and 500 µg/L) delayed metamorphosis and inhibited the growth of tadpoles at concentrations of 125 µg/L. Effects on biochemical reserves showed that 2,4-D increased total hepatic lipids in tadpoles, although some individual lipid classes (e.g. free fatty acids and triglycerides) were reduced. Protein and carbohydrates contents were also impaired by 2,4-D, suggesting a disruption on energy metabolism of amphibians by the herbicide. In addition to biochemical changes, respiration rates and swimming speed were also decreased after chronic exposure to 2,4-D, and these responses appeared to be correlated with the changes detected in the basic energy content. Avoidance test indicated that tadpoles of L. catesbeinus avoided the presence of 2,4-D, however they were unable to detect increasing gradients of the contaminant. Our data showed that chronic exposure to 2,4-D impaired biochemical, physiological and behavioral aspects of tadpoles, which may compromise their health and make them more vulnerable to environmental stressors in natural systems.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Avoidance Learning/drug effects , Energy Metabolism/drug effects , Herbicides/toxicity , Larva/drug effects , Respiratory Rate/drug effects , Water Pollutants, Chemical/toxicity , Animals , Brazil , Dose-Response Relationship, Drug , Larva/metabolism , Metamorphosis, Biological/drug effects , Rana catesbeiana , Swimming , Toxicity Tests, Acute
17.
Ecotoxicology ; 28(6): 707-715, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31250286

ABSTRACT

Despite the high amphibian biodiversity and increasing pesticide use in tropical countries, knowledge on the sensitivity of tropical amphibians to pesticides remains limited. The aim of this study was to evaluate the acute toxicity of the active ingredients of four of the main herbicides used in Brazilian sugarcane production to tadpoles of two tropical frog species: Physalaemus cuvieri and Hypsiboas pardalis. The calculated 96 h-LC50 (median lethal concentration; in mg a.s./L) values for P. cuvieri and H. pardalis were 4.4 and 7.8 (acetochlor); 15 and <10 (ametryn); 115 and 106 (glyphosate); and 85 and 68 (metribuzin), respectively. These toxicity values demonstrated little interspecies variation and the toxicity of the herbicides appeared to be at least partly related with the respective octanol-water coefficient. Published acute toxicity data of fish and amphibians for herbicides were also compiled from the US-EPA ECOTOX database. These data indicated little difference in herbicide sensitivity between tropical amphibians and both non-tropical amphibians and fish. These findings indicate that temperate (fish and amphibian) herbicide toxicity data are also protective for tropical amphibians. Constraints in such extrapolations and indications for future research are discussed.


Subject(s)
Anura , Herbicides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Animals , Anura/growth & development , Brazil , Larva/growth & development , Lethal Dose 50 , Saccharum/growth & development , Toxicity Tests, Acute
18.
Neotrop. ichthyol ; 17(1): e180099, 2019. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-984766

ABSTRACT

The expansion of the Amazonian agricultural frontier represents the most extensive land cover change in the world, detrimentally affecting stream ecosystems which collectively harbor the greatest diversity of freshwater fish on the planet. Our goal was to test the hypotheses that deforestation affects the abundance, richness, and taxonomic structure of headwater stream fish assemblages in the Upper Xingu River Basin, in Southeastern Amazonia. Standardized sampling surveys in replicated first order streams demonstrated that deforestation strongly influences fish assemblage structure. Deforested stream reaches had twice the fish abundance than reference stream reaches in primary forests. These differences in assemblage structure were largely driven by increases in the abundance of a handful of species, as no influence of deforestation on species richness was observed. Stream canopy cover was the strongest predictor of assemblage structure, possibly by a combination of direct and indirect effects on the provision of forest detritus, food resources, channel morphology, and micro-climate regulation. Given the dynamic nature of change in land cover and use in the region, this article is an important contribution to the understanding of the effects of deforestation on Amazonian stream fish, and their conservation.(AU)


A expansão da fronteira agrícola amazônica representa a mais ampla mudança na cobertura e uso da terra no mundo contemporâneo, e ameaça a integridade de ecossistemas de riachos que abrigam a maior diversidade de peixes de água doce do planeta. Nosso objetivo foi testar as hipóteses de que o desmatamento afeta a abundância, a riqueza e a estrutura taxonômica de assembleias de peixes em riachos de cabeceira na bacia do alto rio Xingu, no sudeste da Amazônia. Por meio de amostragens padronizadas realizadas em riachos de primeira ordem, demonstramos que o desmatamento influencia fortemente a estrutura das assembleias de peixes. Riachos em áreas desmatadas tiveram o dobro da abundância de peixes que riachos em áreas florestadas. Essas diferenças na estrutura das assembleias foram em grande parte causadas pelo aumento na abundância de algumas poucas espécies, já que nenhuma influência do desmatamento na riqueza de espécies foi observada. A cobertura de dossel sobre os riachos foi o mais forte preditor da estrutura das assembleias, possivelmente por uma combinação de efeitos diretos e indiretos relacionados à provisão de detritos florestais, recursos alimentares, morfologia dos canais, e regulação micro-climática. Dada a natureza dinâmica da mudança na cobertura e uso da terra na região, este artigo é uma contribuição importante para a compreensão dos efeitos a longo prazo do desmatamento nos peixes de riachos amazônicos e, portanto, para sua conservação.(AU)


Subject(s)
Animals , Conservation of Natural Resources/trends , Biodiversity , Rivers , Plant Dispersal , Fishes/classification
19.
PLoS One ; 13(5): e0196560, 2018.
Article in English | MEDLINE | ID: mdl-29718960

ABSTRACT

Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.


Subject(s)
Body Size/physiology , Conservation of Natural Resources , Fishes/physiology , Animals , Brazil , Climate Change , Hot Temperature , Rainforest , Rivers
20.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120378, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23610177

ABSTRACT

Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practices, including pesticide use. Focusing on the Amazonian frontier, we show that producers have varying access to resources, knowledge, control and reward mechanisms to improve land management practices. With poor education and no technical support, pesticide use by smallholders sharply deviated from agronomical recommendations, tending to overutilization of hazardous compounds. By contrast, with higher levels of technical expertise and resources, and aiming at more restrictive markets, large-scale producers adhered more closely to technical recommendations and even voluntarily replaced more hazardous compounds. However, the ecological footprint increased significantly over time because of increased dosage or because formulations that are less toxic to humans may be more toxic to other biodiversity. Frontier regions appear to be unique in terms of the conflicts between production and conservation, and the necessary pesticide risk management and risk reduction can only be achieved through responsibility-sharing by diverse stakeholders, including governmental and intergovernmental organizations, NGOs, financial institutions, pesticide and agricultural industries, producers, academia and consumers.


Subject(s)
Agriculture/methods , Biodiversity , Conservation of Energy Resources/methods , Pesticides/standards , Agriculture/legislation & jurisprudence , Brazil , Commerce , Ecosystem , Saccharum , Glycine max , Transportation , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...