Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 07 27.
Article in English | MEDLINE | ID: mdl-34311841

ABSTRACT

Muscle function relies on the precise architecture of dynamic contractile elements, which must be fine-tuned to maintain motility throughout life. Muscle is also plastic, and remodeled in response to stress, growth, neural and metabolic inputs. The conserved muscle-enriched microRNA, miR-1, regulates distinct aspects of muscle development, but whether it plays a role during aging is unknown. Here we investigated Caenorhabditis elegans miR-1 in muscle function in response to proteostatic stress. mir-1 deletion improved mid-life muscle motility, pharyngeal pumping, and organismal longevity upon polyQ35 proteotoxic challenge. We identified multiple vacuolar ATPase subunits as subject to miR-1 control, and the regulatory subunit vha-13/ATP6V1A as a direct target downregulated via its 3'UTR to mediate miR-1 physiology. miR-1 further regulates nuclear localization of lysosomal biogenesis factor HLH-30/TFEB and lysosomal acidification. Our studies reveal that miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact muscle function and health during aging.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Lysosomes/metabolism , MicroRNAs/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Cell Nucleus , Longevity/genetics , Muscles/metabolism , Mutation/genetics
2.
Nat Metab ; 2(5): 387-396, 2020 05.
Article in English | MEDLINE | ID: mdl-32694663

ABSTRACT

Mitochondria are multidimensional organelles whose activities are essential to cellular vitality and organismal longevity, yet underlying regulatory mechanisms spanning these different levels of organization remain elusive1-5. Here we show that Caenorhabditis elegans nuclear transcription factor Y, beta subunit (NFYB-1), a subunit of the NF-Y transcriptional complex6-8, is a crucial regulator of mitochondrial function. Identified in RNA interference (RNAi) screens, NFYB-1 loss leads to perturbed mitochondrial gene expression, reduced oxygen consumption, mitochondrial fragmentation, disruption of mitochondrial stress pathways, decreased mitochondrial cardiolipin levels and abolition of organismal longevity triggered by mitochondrial impairment. Multi-omics analysis reveals that NFYB-1 is a potent repressor of lysosomal prosaposin, a regulator of glycosphingolipid metabolism. Limiting prosaposin expression unexpectedly restores cardiolipin production, mitochondrial function and longevity in the nfyb-1 background. Similarly, cardiolipin supplementation rescues nfyb-1 phenotypes. These findings suggest that the NFYB-1-prosaposin axis coordinates lysosomal to mitochondria signalling via lipid pools to enhance cellular mitochondrial function and organismal health.


Subject(s)
Caenorhabditis elegans/physiology , Longevity/physiology , Lysosomes/metabolism , Mitochondria/physiology , Animals , Cardiolipins/metabolism , Cardiolipins/pharmacology , Ceramides/pharmacology , Gene Expression Regulation , Lipidomics , Longevity/genetics , Oxygen Consumption , Proteomics , RNA Interference
3.
iScience ; 23(3): 100887, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32086012

ABSTRACT

Activation of the hexosamine pathway (HP) through gain-of-function mutations in its rate-limiting enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) ameliorates proteotoxicity and increases lifespan in Caenorhabditis elegans. Here, we investigate the role of the HP in mammalian protein quality control. In mouse neuronal cells, elevation of HP activity led to phosphorylation of both PERK and eIF2α as well as downstream ATF4 activation, identifying the HP as a modulator of the integrated stress response (ISR). Increasing uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) levels through GFAT1 gain-of-function mutations or supplementation with the precursor GlcNAc reduces aggregation of the polyglutamine (polyQ) protein Ataxin-3. Blocking PERK signaling or autophagy suppresses this effect. In C. elegans, overexpression of gfat-1 likewise activates the ISR. Consistently, co-overexpression of gfat-1 and proteotoxic polyQ peptides in muscles reveals a strong protective cell-autonomous role of the HP. Thus, the HP has a conserved role in improving protein quality control through modulation of the ISR.

4.
Oncotarget ; 6(13): 11378-94, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25869099

ABSTRACT

The molecular interactions between B-cell precursor acute lymphoblastic leukemia (pre-B ALL) cells and stromal cells in the bone marrow that provide microenvironmentally-mediated protection against therapeutic drugs are not well-defined. Galectin-3 (Lgals3) is a multifunctional galactose-binding lectin with reported location in the nucleus, cytoplasm and extracellular space in different cell types. We previously reported that ALL cells co-cultured with stroma contain high levels of Galectin-3. We here establish that, in contrast to more mature B-lineage cancers, Galectin-3 detected in and on the ALL cells originates from stromal cells, which express it on their surface, secrete it as soluble protein and also in exosomes. Soluble and stromal-bound Galectin-3 is internalized by ALL cells, transported to the nucleus and stimulates transcription of endogenous LGALS3 mRNA. When human and mouse ALL cells develop tolerance to different drugs while in contact with protective stromal cells, Galectin-3 protein levels are consistently increased. This correlates with induction of Galectin-3 transcription in the ALL cells. Thus Galectin-3 sourced from stroma becomes supplemented by endogenous Galectin-3 production in the pre-B ALL cells that are under continuous stress from drug treatment. Our data suggest that stromal Galectin-3 may protect ALL cells through auto-induction of Galectin-3 mRNA and tonic NFκB pathway activation. Since endogenously synthesized Galectin-3 protects pre-B ALL cells against drug treatment, we identify Galectin-3 as one possible target to counteract the protective effects of stroma.


Subject(s)
Galectin 3/metabolism , Paracrine Communication , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , Stromal Cells/metabolism , Active Transport, Cell Nucleus , Animals , Antineoplastic Agents/pharmacology , Blood Proteins , Cell Line, Tumor , Endocytosis , Exosomes/metabolism , Galectin 3/deficiency , Galectin 3/genetics , Galectins , Gene Expression Regulation, Leukemic , Humans , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Paracrine Communication/drug effects , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Messenger/metabolism , Signal Transduction/drug effects , Stromal Cells/pathology , Time Factors , Transcription, Genetic , Transcriptional Activation , Transfection , Tumor Microenvironment
5.
Mol Cancer Ther ; 13(6): 1567-77, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24825858

ABSTRACT

B-cell activating factor receptor (BAFF-R) is expressed on precursor B acute lymphoblastic leukemia (pre-B ALL) cells, but not on their pre-B normal counterparts. Thus, selective killing of ALL cells is possible by targeting this receptor. Here, we have further examined therapeutic targeting of pre-B ALL based on the presence of the BAFF-R. Mouse pre-B ALL cells lacking BAFF-R function had comparable viability and proliferation to wild-type cells, but were more sensitive to drug treatment in vitro. Viability of human pre-B ALL cells was further reduced when antibodies to the BAFF-R were combined with other drugs, even in the presence of stromal protection. This indicates that inhibition of BAFF-R function reduces fitness of stressed pre-B ALL cells. We tested a novel humanized anti-BAFF-R monoclonal antibody optimalized for FcRγIII-mediated, antibody-dependent cell killing by effector cells. Antibody binding to human ALL cells was inhibitable, in a dose-dependent manner, by recombinant human BAFF. There was no evidence for internalization of the antibodies. The antibodies significantly stimulated natural killer cell-mediated killing of different human patient-derived ALL cells. Moreover, incubation of such ALL cells with these antibodies stimulated phagocytosis by macrophages. When this was tested in an immunodeficient transplant model, mice that were treated with the antibody had a significantly decreased leukemia burden in bone marrow and spleen. In view of the restricted expression of the BAFF-R on normal cells and the multiple anti-pre-B ALL activities stimulated by this antibody, a further examination of its use for treatment of pre-B ALL is warranted.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , B-Cell Activation Factor Receptor/immunology , Immunotherapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , B-Cell Activation Factor Receptor/antagonists & inhibitors , Cell Line, Tumor , Humans , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/immunology , Mice , Molecular Targeted Therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...