Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38228950

ABSTRACT

In the European Union (EU), a common understanding of the potential harmful effect of sewage sludge (SS) on the environment is regulated by the Sewage Sludge Directive 86/278/EEC (SSD). Limit values (LVs) for concentrations of heavy metals in soil are listed in Impact Assessment of this directive, and they were transposed by EU member states using different criteria. Member states adopted either single limit values or based on soil factors such as pH and texture to define the maximum limit values for concentrations of heavy metals in soils. Our work presents the first quantitative analysis of the SSD at the European level by using the Land Use and Coverage Area Frame Survey (LUCAS) 2009 topsoil database. The reference values at the European level were arranged taking into account the upper value (EU_UL) and the lower value (EU_LL) for each heavy metal (arsenic, cadmium, copper, chromium, mercury, nickel, lead, and zinc) as well as taking into account the pH of the soil (cadmium, copper, mercury, nickel, lead, and zinc) as introduced in the SSD Annex IA. Single and integrated contamination rate indices were developed to identify those agricultural soils that exceeded the reference values for each heavy metal. In total, 10%, 36%, and 19% of the LUCAS 2009 topsoil samples exceeded the limit values. Additionally, 12% and 16% of agricultural soils exceeded the concentration of at least one single heavy metal when European LVs were fixed following the soil pH in Strategy II compared to those national ones in Strategy I. Generally, all member states apply similar or stricter limit values than those laid down in the SSD. Our work indicates that choosing LVs quantitatively affects further actions such as monitoring and remediation of contaminated soils. The actual soil parameters, such as heavy metal concentrations and soil pH values from the LUCAS 2009 topsoil database, could be used by SSD-involved policy stakeholders not only to lay down the LVs for concentrations of heavy metal in soils but also for monitoring the SSD compliance grade by using the LUCAS surveys over time (past and upcoming LUCAS datasets).

2.
Results Phys ; 35: 105374, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35228988

ABSTRACT

Following its identification in late 2019, COVID-19 has spread around the globe, and been declared a pandemic. With this in mind, modelling the spread of COVID-19 remains important for responding effectively. To date research has focused primarily on modelling the spread of COVID-19 on national and regional scales with just a few studies doing so on a city and sub-city scale. However, no attempts have yet been made to design and optimize a model explicitly for accurately forecasting the spread of COVID-19 at sub-city scale. This research aimed to address this research gap by developing an experimental LSTM-ANN deep learning model. The model is largely autoregressive in nature as it considers temporally lagged borough-level COVID-19 cases data from the last 9 days, but also considers temporally lagged (i) borough-level NO2 concentration data, (ii) government stringency data, and (iii) climatic data from the last 9 days, as well as non-temporally variable borough-level urban characteristics data when modelling and forecasting the spread of the disease. The model was also encouraged to learn the spatial relationships between boroughs with regards to the spread of COVID-19 by a novel MSE-Moran's I loss function. Overall, the model's performance appears promising and so the model represents a useful tool for assisting the decision making and interventions of governing bodies within cities. A sensitivity analysis also indicated that of the non COVID-19 variables, the government stringency is particularly important in the modelling process, with this being closely followed by the climatic variables, the NO2 concentration data, and finally the urban characteristics data. Additionally, the introduction of the novel MSE-Moran's I loss function appeared to improve the model's forecasting performance, and so this research has implications at the intersection of deep learning and disease modelling. It may also have implications within spatio-temporal forecasting more generally because such a feature may have the potential to improve forecasting in other spatio-temporal applications.

3.
MethodsX ; 9: 101662, 2022.
Article in English | MEDLINE | ID: mdl-35345790

ABSTRACT

To assess carbon sequestration in the agricultural and natural systems, it is usually required to report soil organic carbon (SOC) as mass per unit area (Mg ha-1) for a single soil layer (e.g., the 0-0.3 m ploughing layer). However, if the SOC data are reported as relative concentration (g kg-1 or %), it is required to compute the SOC stock and its standard deviation (SD) for a given layer as the product of SOC concentration and bulk density (BD). For a proper computation, it is required to consider that these two variables are correlated. Moreover, if the data are already reported as SOC stock for multiple sub-layers (e.g., 0-0.15 m, 0.15-0.3 m) it is necessary to compute the SOC stock and its SD for a single soil layer (e.g., 0-0.3 m). The correlation between stocks values from adjacent and non-adjacent soil sub-layers must be accounted to compute the SD of the single soil layer. The present work illustrates the methodology to compute SOC stock and its SD for a single soil layer based on SOC concentration and BD also from multiple sub-layers. An Excel workbook automatically computes the means of stocks and SD saving the results in a ready-to-use database.•Computation of a carbon (SOC) stock and its standard deviation (SD) from the product between SOC concentration and bulk density (BD), being correlated variables.•Computation of a SOC stock and its SD from the sum of SOC stocks of multiple correlated sub-layers.•An Excel workbook automatically computes the means of SOC stocks and SD and saves the results in a ready-to-use database.

4.
Carbon Balance Manag ; 16(1): 19, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34097152

ABSTRACT

BACKGROUND: Legacy data are unique occasions for estimating soil organic carbon (SOC) concentration changes and spatial variability, but their use showed limitations due to the sampling schemes adopted and improvements may be needed in the analysis methodologies. When SOC changes is estimated with legacy data, the use of soil samples collected in different plots (i.e., non-paired data) may lead to biased results. In the present work, N = 302 georeferenced soil samples were selected from a regional (Sicily, south of Italy) soil database. An operational sampling approach was developed to spot SOC concentration changes from 1994 to 2017 in the same plots at the 0-30 cm soil depth and tested. RESULTS: The measurements were conducted after computing the minimum number of samples needed to have a reliable estimate of SOC variation after 23 years. By applying an effect size based methodology, 30 out of 302 sites were resampled in 2017 to achieve a power of 80%, and an α = 0.05. A Wilcoxon test applied to the variation of SOC from 1994 to 2017 suggested that there was not a statistical difference in SOC concentration after 23 years (Z = - 0.556; 2-tailed asymptotic significance = 0.578). In particular, only 40% of resampled sites showed a higher SOC concentration than in 2017. CONCLUSIONS: This finding contrasts with a previous SOC concentration increase that was found in 2008 (75.8% increase when estimated as differences of 2 models built with non-paired data), when compared to 1994 observed data (Z = - 9.119; 2-tailed asymptotic significance < 0.001). This suggests that the use of legacy data to estimate SOC concentration dynamics requires soil resampling in the same locations to overcome the stochastic model errors. Further experiment is needed to identify the percentage of the sites to resample in order to align two legacy datasets in the same area.

5.
Sci Total Environ ; 780: 146609, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030315

ABSTRACT

For the estimation of the soil organic carbon stocks, bulk density (BD) is a fundamental parameter but measured data are usually not available especially when dealing with legacy soil data. It is possible to estimate BD by applying pedotransfer function (PTF). We applied different estimation methods with the aim to define a suitable PTF for BD of arable land for the Mediterranean Basin, which has peculiar climate features that may influence the soil carbon sequestration. To improve the existing BD estimation methods, we used a set of public climatic and topographic data along with the soil texture and organic carbon data. The present work consisted of the following steps: i) development of three PTFs models separately for top (0-0.4 m) and subsoil (0.4-1.2 m), ii) a 10-fold cross-validation, iii) model transferability using an external dataset derived from published data. The development of the new PTFs was based on the training dataset consisting of World Soil Information Service (WoSIS) soil profile data, climatic data from WorldClim at 1 km spatial resolution and Shuttle Radar Topography Mission (SRTM) digital elevation model at 30 m spatial resolution. The three PTFs models were developed using: Multiple Linear Regression stepwise (MLR-S), Multiple Linear Regression backward stepwise (MLR-BS), and Artificial Neural Network (ANN). The predictions of the newly developed PTFs were compared with the BD calculated using the PTF proposed by Manrique and Jones (MJ) and the modelled BD derived from the global SoilGrids dataset. For the topsoil training dataset (N = 129), MLR-S, MLR-BS and ANN had a R2 0.35, 0.58 and 0.86, respectively. For the model transferability, the three PTFs applied to the external topsoil dataset (N = 59), achieved R2 values of 0.06, 0.03 and 0.41. For the subsoil training dataset (N = 180), MLR-S, MLR-BS and ANN the R2 values were 0.36, 0.46 and 0.83, respectively. When applied to the external subsoil dataset (N = 29), the R2 values were 0.05, 0.06 and 0.41. The cross-validation for both top and subsoil dataset, resulted in an intermediate performance compared to calibration and validation with the external dataset. The new ANN PTF outperformed MLR-S, MLR-BS, MJ and SoilGrids approaches for estimating BD. Further improvements may be achieved by additionally considering the time of sampling, agricultural soil management and cultivation practices in predictive models.

6.
Sci Total Environ ; 601-602: 821-832, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28578240

ABSTRACT

SOC is the most important indicator of soil fertility and monitoring its space-time changes is a prerequisite to establish strategies to reduce soil loss and preserve its quality. Here we modelled the topsoil (0-0.3m) SOC concentration of the cultivated area of Sicily in 1993 and 2008. Sicily is an extremely variable region with a high number of ecosystems, soils, and microclimates. We studied the role of time and land use in the modelling of SOC, and assessed the role of remote sensing (RS) covariates in the boosted regression trees modelling. The models obtained showed a high pseudo-R2 (0.63-0.69) and low uncertainty (s.d.<0.76gCkg-1 with RS, and <1.25gCkg-1 without RS). These outputs allowed depicting a time variation of SOC at 1arcsec. SOC estimation strongly depended on the soil texture, land use, rainfall and topographic indices related to erosion and deposition. RS indices captured one fifth of the total variance explained, slightly changed the ranking of variance explained by the non-RS predictors, and reduced the variability of the model replicates. During the study period, SOC decreased in the areas with relatively high initial SOC, and increased in the area with high temperature and low rainfall, dominated by arables. This was likely due to the compulsory application of some Good Agricultural and Environmental practices. These results confirm that the importance of texture and land use in short-term SOC variation is comparable to climate. The present results call for agronomic and policy intervention at the district level to maintain fertility and yield potential. In addition, the present results suggest that the application of RS covariates enhanced the modelling performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...