Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554102

ABSTRACT

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Subject(s)
Bacteriophage lambda , DNA-Binding Proteins , Models, Molecular , Viral Proteins , Bacteriophage lambda/genetics , Crystallography, X-Ray , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Binding , Protein Multimerization , DNA, Viral/genetics , DNA, Viral/metabolism , Mutation , Lysogeny , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/metabolism , DNA/chemistry
2.
Nat Commun ; 13(1): 6368, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289207

ABSTRACT

Poleroviruses, enamoviruses, and luteoviruses are icosahedral, positive sense RNA viruses that cause economically important diseases in food and fiber crops. They are transmitted by phloem-feeding aphids in a circulative manner that involves the movement across and within insect tissues. The N-terminal portion of the viral readthrough domain (NRTD) has been implicated as a key determinant of aphid transmission in each of these genera. Here, we report crystal structures of the NRTDs from the poleroviruses turnip yellow virus (TuYV) and potato leafroll virus (PLRV) at 1.53-Å and 2.22-Å resolution, respectively. These adopt a two-domain arrangement with a unique interdigitated topology and form highly conserved dimers that are stabilized by a C-terminal peptide that is critical for proper folding. We demonstrate that the PLRV NRTD can act as an inhibitor of virus transmission and identify NRTD mutant variants that are lethal to aphids. Sequence conservation argues that enamovirus and luteovirus NRTDs will follow the same structural blueprint, which affords a biological approach to block the spread of these agricultural pathogens in a generalizable manner.


Subject(s)
Aphids , Luteoviridae , Luteovirus , Animals , Luteoviridae/genetics , Luteovirus/genetics , Phloem , Plant Diseases
3.
Elife ; 112022 02 08.
Article in English | MEDLINE | ID: mdl-35133274

ABSTRACT

DNA damage response mechanisms have meiotic roles that ensure successful gamete formation. While completion of meiotic double-strand break (DSB) repair requires the canonical RAD9A-RAD1-HUS1 (9A-1-1) complex, mammalian meiocytes also express RAD9A and HUS1 paralogs, RAD9B and HUS1B, predicted to form alternative 9-1-1 complexes. The RAD1 subunit is shared by all predicted 9-1-1 complexes and localizes to meiotic chromosomes even in the absence of HUS1 and RAD9A. Here, we report that testis-specific disruption of RAD1 in mice resulted in impaired DSB repair, germ cell depletion, and infertility. Unlike Hus1 or Rad9a disruption, Rad1 loss in meiocytes also caused severe defects in homolog synapsis, impaired phosphorylation of ATR targets such as H2AX, CHK1, and HORMAD2, and compromised meiotic sex chromosome inactivation. Together, these results establish critical roles for both canonical and alternative 9-1-1 complexes in meiotic ATR activation and successful prophase I completion.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Chromosome Pairing , DNA Repair , Meiosis , Animals , DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Male , Mice , Mice, Transgenic , Signal Transduction , Testis/metabolism
4.
J Struct Biol ; 214(1): 107811, 2022 03.
Article in English | MEDLINE | ID: mdl-34813955

ABSTRACT

Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.


Subject(s)
Luteoviridae , Virus Assembly , Capsid/chemistry , Capsid Proteins/chemistry , Cryoelectron Microscopy
5.
Mol Microbiol ; 116(4): 1044-1063, 2021 10.
Article in English | MEDLINE | ID: mdl-34379857

ABSTRACT

The CI and Cro repressors of bacteriophage λ create a bistable switch between lysogenic and lytic growth. In λ lysogens, CI repressor expressed from the PRM promoter blocks expression of the lytic promoters PL and PR to allow stable maintenance of the lysogenic state. When lysogens are induced, CI repressor is inactivated and Cro repressor is expressed from the lytic PR promoter. Cro repressor blocks PRM transcription and CI repressor synthesis to ensure that the lytic state proceeds. RexA and RexB proteins, like CI, are expressed from the PRM promoter in λ lysogens; RexB is also expressed from a second promoter, PLIT , embedded in rexA. Here we show that RexA binds CI repressor and assists the transition from lysogenic to lytic growth, using both intact lysogens and defective prophages with reporter genes under the control of the lytic PL and PR promoters. Once lytic growth begins, if the bistable switch does return to the immune state, RexA expression lessens the probability that it will remain there, thus stabilizing the lytic state and activation of the lytic PL  and PR  promoters. RexB modulates the effect of RexA and may also help establish phage DNA replication as lytic growth ensues.


Subject(s)
Bacteriophage lambda/physiology , DNA Replication , Lysogeny , Repressor Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , DNA, Viral , Gene Expression Regulation, Viral , Genes, Viral , Promoter Regions, Genetic , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism
6.
Infect Immun ; 88(10)2020 09 18.
Article in English | MEDLINE | ID: mdl-32690633

ABSTRACT

Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.


Subject(s)
AraC Transcription Factor/metabolism , Intestines/microbiology , Palmitic Acids/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Animals , AraC Transcription Factor/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fatty Acid Transport Proteins/genetics , Fatty Acid Transport Proteins/metabolism , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Gene Expression Regulation, Bacterial , Genomic Islands/genetics , Mice , Palmitic Acids/chemistry , Protein Binding , Protein Stability , Salmonella typhimurium/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics
7.
Mol Cell ; 78(6): 1237-1251.e7, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32442397

ABSTRACT

DNA replication stress can stall replication forks, leading to genome instability. DNA damage tolerance pathways assist fork progression, promoting replication fork reversal, translesion DNA synthesis (TLS), and repriming. In the absence of the fork remodeler HLTF, forks fail to slow following replication stress, but underlying mechanisms and cellular consequences remain elusive. Here, we demonstrate that HLTF-deficient cells fail to undergo fork reversal in vivo and rely on the primase-polymerase PRIMPOL for repriming, unrestrained replication, and S phase progression upon limiting nucleotide levels. By contrast, in an HLTF-HIRAN mutant, unrestrained replication relies on the TLS protein REV1. Importantly, HLTF-deficient cells also exhibit reduced double-strand break (DSB) formation and increased survival upon replication stress. Our findings suggest that HLTF promotes fork remodeling, preventing other mechanisms of replication stress tolerance in cancer cells. This remarkable plasticity of the replication fork may determine the outcome of replication stress in terms of genome integrity, tumorigenesis, and response to chemotherapy.


Subject(s)
DNA Replication/physiology , DNA-Binding Proteins/metabolism , DNA/biosynthesis , Transcription Factors/metabolism , Cell Line, Tumor , DNA/genetics , DNA Damage/genetics , DNA Primase/metabolism , DNA Primase/physiology , DNA Repair/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/physiology , HEK293 Cells , Humans , K562 Cells , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/physiology , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/physiology , Transcription Factors/genetics
8.
Nucleic Acids Res ; 48(5): 2762-2776, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32009148

ABSTRACT

OLD family nucleases contain an N-terminal ATPase domain and a C-terminal Toprim domain. Homologs segregate into two classes based on primary sequence length and the presence/absence of a unique UvrD/PcrA/Rep-like helicase gene immediately downstream in the genome. Although we previously defined the catalytic machinery controlling Class 2 nuclease cleavage, degenerate conservation of the C-termini between classes precludes pinpointing the analogous residues in Class 1 enzymes by sequence alignment alone. Our Class 2 structures also provide no information on ATPase domain architecture and ATP hydrolysis. Here we present the full-length structure of the Class 1 OLD nuclease from Thermus scotoductus (Ts) at 2.20 Å resolution, which reveals a dimerization domain inserted into an N-terminal ABC ATPase fold and a C-terminal Toprim domain. Structural homology with genome maintenance proteins identifies conserved residues responsible for Ts OLD ATPase activity. Ts OLD lacks the C-terminal helical domain present in Class 2 OLD homologs yet preserves the spatial organization of the nuclease active site, arguing that OLD proteins use a conserved catalytic mechanism for DNA cleavage. We also demonstrate that mutants perturbing ATP hydrolysis or DNA cleavage in vitro impair P2 OLD-mediated killing of recBC-Escherichia coli hosts, indicating that both the ATPase and nuclease activities are required for OLD function in vivo.


Subject(s)
Adenosine Triphosphate/metabolism , Biocatalysis , Endonucleases/chemistry , Endonucleases/metabolism , Thermus/enzymology , Adenosine Triphosphatases/chemistry , Conserved Sequence , Hydrolysis , Metals/metabolism , Models, Molecular , Mutation/genetics , Protein Domains
9.
Nucleic Acids Res ; 47(17): 9448-9463, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31400118

ABSTRACT

Overcoming lysogenization defect (OLD) proteins constitute a family of uncharacterized nucleases present in bacteria, archaea, and some viruses. These enzymes contain an N-terminal ATPase domain and a C-terminal Toprim domain common amongst replication, recombination, and repair proteins. The in vivo activities of OLD proteins remain poorly understood and no definitive structural information exists. Here we identify and define two classes of OLD proteins based on differences in gene neighborhood and amino acid sequence conservation and present the crystal structures of the catalytic C-terminal regions from the Burkholderia pseudomallei and Xanthamonas campestris p.v. campestris Class 2 OLD proteins at 2.24 Å and 1.86 Å resolution respectively. The structures reveal a two-domain architecture containing a Toprim domain with altered architecture and a unique helical domain. Conserved side chains contributed by both domains coordinate two bound magnesium ions in the active site of B. pseudomallei OLD in a geometry that supports a two-metal catalysis mechanism for cleavage. The spatial organization of these domains additionally suggests a novel mode of DNA binding that is distinct from other Toprim containing proteins. Together, these findings define the fundamental structural properties of the OLD family catalytic core and the underlying mechanism controlling nuclease activity.


Subject(s)
Burkholderia pseudomallei/chemistry , Catalytic Domain/genetics , Deoxyribonucleases/ultrastructure , Protein Conformation , Xanthomonas/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence/genetics , Burkholderia pseudomallei/genetics , Catalysis , Deoxyribonucleases/chemistry , Deoxyribonucleases/genetics , Evolution, Molecular , Lysogeny/genetics , Metals/chemistry , Protein Domains/genetics , Sequence Alignment , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...