Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Front Immunol ; 15: 1383753, 2024.
Article in English | MEDLINE | ID: mdl-39040106

ABSTRACT

Outbreaks of Ebolaviruses, such as Sudanvirus (SUDV) in Uganda in 2022, demonstrate that species other than the Zaire ebolavirus (EBOV), which is currently the sole virus represented in current licensed vaccines, remain a major threat to global health. There is a pressing need to develop effective pan-species vaccines and novel monoclonal antibody-based therapeutics for Ebolavirus disease. In response to recent outbreaks, the two dose, heterologous Ad26.ZEBOV/MVA-BN-Filo vaccine regimen was developed and was tested in a large phase II clinical trial (EBL2001) as part of the EBOVAC2 consortium. Here, we perform bulk sequencing of the variable heavy chain (VH) of B cell receptors (BCR) in forty participants from the EBL2001 trial in order to characterize the BCR repertoire in response to vaccination with Ad26.ZEBOV/MVA-BN-Filo. We develop a comprehensive database, EBOV-AbDab, of publicly available Ebolavirus-specific antibody sequences. We then use our database to predict the antigen-specific component of the vaccinee repertoires. Our results show striking convergence in VH germline gene usage across participants following the MVA-BN-Filo dose, and provide further evidence of the role of IGHV3-15 and IGHV3-13 antibodies in the B cell response to Ebolavirus glycoprotein. Furthermore, we found that previously described Ebola-specific mAb sequences present in EBOV-AbDab were sufficient to describe at least one of the ten most expanded BCR clonotypes in more than two thirds of our cohort of vaccinees following the boost, providing proof of principle for the utility of computational mining of immune repertoires.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Receptors, Antigen, B-Cell , Vaccination , Humans , Ebola Vaccines/immunology , Ebola Vaccines/administration & dosage , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Ebolavirus/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Computational Biology/methods , Adult , Male , B-Lymphocytes/immunology , Female , Data Mining
2.
bioRxiv ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38979279

ABSTRACT

Ebolavirus disease (EVD) is caused by multiple species of Ebolavirus. Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by Zaire ebolavirus (EBOV). Therefore, mAbs targeting multiple Ebolavirus species may represent the next generation of EVD therapeutics. Broadly reactive anti-GP mAbs were produced; among these, mAbs 11886 and 11883 were broadly neutralizing in vitro. A 3.0 Å cryo-electron microscopy structure of EBOV GP bound to both mAbs shows that 11886 binds a novel epitope bridging the glycan cap (GC), 310 pocket and GP2 N-terminus, whereas 11883 binds the receptor binding region (RBR) and GC. In vitro, 11886 synergized with a range of mAbs with epitope specificities spanning the RBR/GC, including 11883. Notably, 11886 increased the breadth of neutralization by partner mAbs against different Ebolavirus species. These data provide a strategic route to design improved mAb-based next-generation EVD therapeutics.

3.
PLoS Pathog ; 20(6): e1012246, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857264

ABSTRACT

Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Immunization, Secondary , Epitopes/immunology , B-Lymphocytes/immunology
4.
Nat Commun ; 14(1): 311, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658148

ABSTRACT

Antibody-mediated immunity plays a crucial role in protection against SARS-CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding domain (RBD) antibodies elicited upon natural infection and vaccination and showed that they recognize an immunogenic patch on the internal surface of the core RBD, which faces inwards and is hidden in the "down" state. These antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and Delta variants and some are effective against other sarbecoviruses. We observed a continuum of partially overlapping antibody epitopes from lower to upper part of the inner face of the RBD and some antibodies extend towards the receptor-binding motif. The majority of antibodies are substantially compromised by three mutational hotspots (S371L/F, S373P and S375F) in the lower part of the Omicron BA.1, BA.2 and BA.4/5 RBD. By contrast, antibody IY-2A induces a partial unfolding of this variable region and interacts with a conserved conformational epitope to tolerate all antigenic variations and neutralize diverse sarbecoviruses as well. This finding establishes that antibody recognition is not limited to the normal surface structures on the RBD. In conclusion, the delineation of functionally and structurally conserved RBD epitopes highlights potential vaccine and therapeutic candidates for COVID-19.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Epitopes , SARS-CoV-2 , Severe acute respiratory syndrome-related coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
Immunology ; 167(2): 263-274, 2022 10.
Article in English | MEDLINE | ID: mdl-35751563

ABSTRACT

To determine the antibody responses elicited by different vaccines against SARS-CoV-2, we compared antibody responses in individuals 3 months post-vaccination in those who had received different vaccines in Sri Lanka. Abs to the receptor binding domain (RBD) of the ancestral (wild type) virus (WT) as well as to variants of concern (VoCs), and ACE2 blocking Abs, were assessed in individuals vaccinated with Moderna (n = 225), Sputnik V (n = 128) or Sputnik light (n = 184) and the results were compared with previously reported data on Sinopharm and AZD1222 vaccinees. A total of 99.5% of Moderna, >94% of AZD1222 or Sputnik V and >70% of Sputnik light, >60% of Sinopharm vaccine recipients, had a positive response to ACE2 blocking antibodies. The ACE2 blocking antibody levels were highest to lowest was Moderna > Sputnik V/AZD1222 (had equal levels) > Sputnik light > Sinopharm. All Moderna recipients had antibodies to the RBD of WT, alpha and beta, while positivity rates for delta variant was 80%. The positivity rates for Sputnik V vaccinees for the WT and VoCs were higher than for AZD1222 vaccinees while those who received Sinopharm had the lowest positivity rates (<16.7%). The total antibodies to the RBD were highest for the Sputnik V and AZD1222 vaccinees. The Moderna vaccine elicited the highest ACE2 blocking antibody levels followed by Sputnik V/AZD1222, while those who received Sinopharm had the lowest levels. These findings highlight the need for further studies to understand the effects on clinical outcomes.


Subject(s)
COVID-19 , Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Blocking , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Sri Lanka
6.
Immunology ; 167(2): 275-285, 2022 10.
Article in English | MEDLINE | ID: mdl-35758860

ABSTRACT

As there are limited data of the immunogenicity of the Sinopharm/BBIBP-CorV in different populations, antibody responses against different SARS-CoV-2 variants of concern and T cell responses, we investigated the immunogenicity of the vaccine, in individuals in Sri Lanka. SARS-CoV-2-specific antibodies were measured in 282 individuals who were seronegative at baseline, and ACE2 receptor blocking antibodies, antibodies to the receptor-binding domain (RBD) of the wild-type (WT), alpha, beta and delta variants, ex vivo and cultured IFNγ ELISpot assays, intracellular cytokine secretion assays and B cell ELISpot assays were carried out in a sub cohort of the vaccinees at 4 and 6 weeks (2 weeks after the second dose). Ninety-five percent of the vaccinees seroconverted, although the seroconversion rates were significantly lower (p < 0.001) in individuals >60 years (93.3%) compared to those who were 20-39 years (98.9%); 81.25% had ACE2 receptor blocking antibodies at 6 weeks, and there was no difference in these antibody titres in vaccine sera compared to convalescent sera (p = 0.44). Vaccinees had significantly less (p < 0.0001) antibodies to the RBD of WT and alpha, although there was no difference in antibodies to the RBD of beta and delta compared to convalescent sera; 27.7% of 46.4% of vaccinees had ex vivo IFNγ and cultured ELISpot responses respectively, and IFNγ and CD107a responses were detected by flow cytometry. Sinopharm/BBIBP-CorV appeared to induce a similar level of antibody responses against ACE2 receptor, delta and beta as seen following natural infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Blocking , Antibodies, Viral , Antibody Formation , COVID-19/therapy , Cytokines , Humans , Immunization, Passive , Receptors, Opioid, delta , Sri Lanka/epidemiology , COVID-19 Serotherapy
7.
Commun Med (Lond) ; 2: 36, 2022.
Article in English | MEDLINE | ID: mdl-35603265

ABSTRACT

Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80-99 years, n = 89) and younger adults (23-77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1-89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72-0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72-76%) older adults respond after two vaccinations to alpha and delta, but only 58-62% to beta and gamma, compared to 96-97% of younger vaccinees and 68-76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.

8.
Immun Inflamm Dis ; 10(6): e621, 2022 06.
Article in English | MEDLINE | ID: mdl-35634958

ABSTRACT

BACKGROUND: To determine the kinetics and persistence of immune responses following the Sinopharm/BBIBP-CorV, we investigated immune responses in a cohort of Sri Lankan individuals. METHODS: SARS-CoV-2 specific total antibodies were measured in 20-39 years (n = 61), 40-59 years (n = 120) and those >60 years of age (n = 22) by enzyme-linked immunosorbent assay, 12 weeks after the second dose of the vaccine. Angiotensin-converting enzyme 2 (ACE2) receptor blocking antibodies (ACE2R-Ab), antibodies to the receptor-binding domain (RBD) of the ancestral virus (WT) and variants of concern, were measured in a sub cohort. T cell responses and memory B cell responses were assessed by ELISpot assays. RESULTS: A total of 193/203 (95.07%) of individuals had detectable SARS-CoV-2 specific total antibodies, while 67/110 (60.9%) had ACE2R-Ab. A total of 14.3%-16.7% individuals in the 20-39 age groups had detectable antibodies to the RBD of the WT and variants of concern, while the positivity rates of those ≥60 years of age was <10%. A total of 14/49 (28.6%) had Interferon gamma ELISpot responses to overlapping peptides of the spike protein, while memory B cell responses were detected in 9/20 to the S1 recombinant protein. The total antibody levels and ACE2R-Ab declined from 2 to 12 weeks from the second dose, while ex vivo T cell responses remained unchanged. The decline in ACE2R-Ab levels was significant among the 40-59 (p = .0007) and ≥60 (p = .005) age groups. CONCLUSIONS: Antibody responses declined in all age groups, especially in those ≥60 years, while T cell responses persisted. The effect of waning of immunity on hospitalization and severe disease should be assessed by long term efficacy studies.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Infant , Middle Aged , SARS-CoV-2
9.
Clin Exp Immunol ; 208(3): 323-331, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35641142

ABSTRACT

To characterize the IgG and IgA responses to different SARS-CoV-2 proteins, we investigated the antibody responses to SARS-CoV-2 following natural infection and following a single dose of AZD1222 (Covishield), in Sri Lankan individuals. The IgG and IgA responses were assessed to S1, S2, RBD, and N proteins in patients at 4 weeks and 12 weeks since the onset of illness or following vaccination. Antibodies to the receptor-binding domain of SARS-CoV-2 wild type (WT), α, ß, and λ and ACE2 (Angiotensin Converting Enzyme 2) receptor blocking antibodies were also assessed in these cohorts. For those with mild illness and in vaccines, the IgG responses to S1, S2, RBD, and N protein increased from 4 weeks to 12 weeks, while it remained unchanged in those with moderate/severe illness. In the vaccines, IgG antibodies to the S2 subunit had the highest significant rise (P < 0.0001). Vaccines had several-fold lower IgA antibodies to all the SARS-CoV-2 proteins tested than those with natural infection. At 12 weeks, the haemagglutination test (HAT) titres were significantly lower to the α in vaccines and significantly lower in those with mild illness and in vaccines to ß and for λ. No such difference was seen in those with moderate/severe illness. Vaccines had significantly less IgA to SARS-CoV-2, but comparable IgG responses those with natural infection. However, following a single dose vaccines had reduced antibody levels to the VOCs, which further declined with time, suggesting the need to reduce the gap between the two doses, in countries experiencing outbreaks due to VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , ChAdOx1 nCoV-19 , Humans , Immunoglobulin A , Immunoglobulin G , Kinetics
10.
Immun Inflamm Dis ; 10(4): e592, 2022 04.
Article in English | MEDLINE | ID: mdl-35349749

ABSTRACT

BACKGROUND: To understand the kinetics of immune responses with different dosing gaps of the AZD1222 vaccine, we compared antibody and T cell responses in two cohorts with two different dosing gaps. METHODS: Antibodies to the SARS-CoV-2 virus were assessed in 297 individuals with a dosing gap of 12 weeks, sampled 12 weeks post second dose (cohort 1) and in 77 individuals with a median dosing gap of 21.4 weeks (cohort 2) sampled 6 weeks post second dose. ACE2-blocking antibodies (ACE2-blocking Abs), antibodies to the receptor-binding domain (RBD) of  variants of concern (VOC), and ex vivo T cell responses were assessed in a subcohort. RESULTS: All individuals (100%) had SARS-CoV-2-specific total antibodies and 94.2% of cohort 1 and 97.1% of cohort 2 had ACE2-blocking Abs. There was no difference in antibody titers or positivity rates in different age groups in both cohorts. The ACE2-blocking Abs (p < .0001) and antibodies to the RBD of the VOCs were significantly higher in cohort 2 compared to cohort 1. 41.2% to 65.8% of different age groups gave a positive response by the hemagglutination assay to the RBD of the ancestral virus and VOCs in cohort 1, while 53.6%-90% gave a positive response in cohort 2. 17/57 (29.8%) of cohort 1 and 17/29 (58.6%) of cohort 2 had ex vivo interferon (IFN)γ ELISpot responses above the positive threshold. The ACE2-blocking antibodies (Spearman's r = .46, p = .008) and ex vivo IFNγ responses (Spearman's r = .71, p < .0001) at 12 weeks post first dose, significantly correlated with levels 12 weeks post second dose. CONCLUSIONS: Both dosing schedules resulted in high antibody and T cell responses post vaccination, although those with a longer dosing gap had a higher magnitude of responses, possibly as immune responses were measured 6 weeks post second dose compared to 12 weeks post second dose.


Subject(s)
COVID-19 , Vaccines , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , Immunity , Kinetics , SARS-CoV-2 , Sri Lanka
11.
Sci Rep ; 12(1): 1727, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110645

ABSTRACT

As the first dose of Gam-COVID-Vac, is currently used as a single dose vaccine in some countries, we investigated the immunogenicity of this at 4 weeks (327 naïve individuals). 88.7% seroconverted, with significantly lower seroconversion rates in those over 60 years (p = 0.004) and significantly lower than previously seen with AZD1222 (p = 0.018). 82.6% developed ACE2 receptor blocking antibodies, although levels were significantly lower than following natural infection (p = 0.0009) and a single dose of AZD1222 (p < 0.0001). Similar titres of antibodies were observed to the receptor binding domain of WT, B.1.1.7 and B.1.617.2 compared to AZD1222, while the levels for B.1.351 were significantly higher (p = 0.006) for Gam-COVID-Vac. 30% developed ex vivo IFNγ ELISpot responses (significantly lower than AZD1222), and high frequency of CD107a expressing T cells along with memory B cell responses. Although single dose of Gam-COVID-Vac was highly immunogenic, administration of a second dose is likely to be beneficial.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Immunization , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/immunology , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19/immunology , Female , Humans , Interferon-gamma/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/virology , Male , Middle Aged , Seroconversion , Time Factors , Treatment Outcome , Vaccines, Synthetic/immunology , Young Adult
12.
Theranostics ; 12(1): 1-17, 2022.
Article in English | MEDLINE | ID: mdl-34987630

ABSTRACT

Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Binding Sites , Binding, Competitive , COVID-19/virology , Cricetinae , Cryoelectron Microscopy , Crystallography, X-Ray , Dogs , Epitopes , Female , Humans , Madin Darby Canine Kidney Cells , Neutralization Tests , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
13.
Front Public Health ; 9: 724398, 2021.
Article in English | MEDLINE | ID: mdl-34869146

ABSTRACT

Background: As the Municipality Council area in Colombo (CMC) experienced the highest number of cases until the end of January 2021, in Sri Lanka, we carried out a serosurvey prior to initiation of the vaccination program to understand the extent of the SARS-CoV-2 outbreak. Methods: SARS-CoV-2 seropositivity was determined in 2,547 individuals between the ages of 10-86 years, by the Wantai total antibody ELISA. We also compared seroprevalence using the haemagglutination test (HAT) to evaluate its usefulness in carrying out serosurveys. Results: The overall seropositivity rate was 24.46%, while seropositivity by HAT was 18.90%. Although The SARS-CoV-2 infection detection rates by PCR were highest in the population between the ages of 20-60 years of age, there was no statistically significant difference in the seropositivity rates in different age groups. For instance, although the seropositivity rate was highest in the 10-20 age group (34.03%), the PCR positivity rate was 9.80%. Differences in the PCR positivity rates and seropositivity rates were also seen in 60-70-year-olds (8.90 vs. 30.4%) and in individuals >70 years (4.10 vs. 1.20%). The seropositivity rate of the females was 29.70% (290/976), which was significantly higher (p < 0.002) than in males 21.2% (333/1,571). Conclusions: A high seroprevalence rate (24.5%) was seen in all age groups in the CMC suggesting that a high level of transmission was seen during this time. The higher PCR positivity rates between the ages of 20-60 are likely to be due to increased testing carried out in the working population. Therefore, the PCR positivity rates, appear to underestimate the true extent of the outbreak and the age groups which were infected.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , Child , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Seroepidemiologic Studies , Sri Lanka/epidemiology , Young Adult
15.
J Immunol ; 207(11): 2681-2687, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34750205

ABSTRACT

Due to limited access to vaccines, many countries have only administered a single dose of the AZD1222, whereas the dosage intervals have increased ≥4 wk. We sought to investigate the immunogenicity of a single dose of vaccine at ≥16 wk postimmunization. Severe acute respiratory syndrome coronavirus 2-specific Abs in 553 individuals and Abs to the receptor-binding domain of the Wuhan virus (wild-type) and the variants of concern, angiotensin-converting enzyme 2 receptor blocking Abs ex vivo and cultured IFN-γ T cell (Homo sapiens) responses and B cell (H. sapiens) ELISPOT responses, were investigated in a subcohort. The seropositivity rates in those >70 y of age (93.7%) was not significantly different compared with other age groups (97.7-98.2; Pearson χ2 = 7.8; p = 0.05). The Ab titers (Ab index) significantly declined (p < 0.0001) with increase in age. A total of 18 of 69 (26.1%) of individuals did not have angiotensin-converting enzyme 2 receptor-blocking Abs, whereas responses to the receptor-binding domain of wild-type (p = 0.03), B.1.1.7 (p = 0.04), and B.1.617.2 (p = 0.02) were significantly lower in those who were >60 y. Ex vivo IFN-γ T cell ELISPOT responses were seen in 10 of 66 (15.1%), whereas only a few expressed CD107a. However, >85% had a high frequency of cultured IFN-γ T cell ELISPOT responses and B cell ELISPOTs. Virus-specific Abs were maintained at ≥16 wk after receiving a single dose of AZD1222, although levels were lower to variants of concern, especially in older individuals. A single dose induced a high frequency of memory T and B cell responses.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Vaccines/pharmacology , SARS-CoV-2/drug effects , Administration, Oral , Adult , Aged , Aged, 80 and over , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , ChAdOx1 nCoV-19 , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
16.
medRxiv ; 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729569

ABSTRACT

BACKGROUND: To understand the kinetics of immune responses with different dosing gaps of the AZD1222 vaccine, we compared antibody and T cell responses in two cohorts with two different dosing gaps. METHODS: Antibodies to the SARS-CoV-2 virus were assessed in 297 individuals with a dosing gap of 12 weeks, sampled at 12 weeks post second dose (cohort 1) and in 77 individuals with a median dosing gap of 21.4 weeks (cohort 2) sampled 6 weeks post second dose. ACE2 receptor blocking antibodies (ACE2R-Abs), antibodies to the receptor binding domain (RBD) of the virus and variants of concern (VOC) and ex vivo T cell responses were assessed in a sub cohort. RESULTS: All individuals (100%) had SARS-CoV-2 specific total antibodies and 94.2% of cohort 1 and 97.1% of cohort 2 had ACE2R-blocking Abs. There was no difference in antibody titres or positivity rates in different age groups in both cohorts. The ACE2R-blocking Abs (p<0.0001) and antibodies to the RBD of the VOCs were significantly higher in cohort 2, compared to cohort 1. 41.2% to 65.8% of different age groups gave a positive response by the haemagglutination assay to the RBD of the ancestral virus and VOCs in cohort 1, while 53.6% to 90% gave a positive response in cohort 2. 17/57 (29.8%) of cohort 1 and 17/29 (58.6%) of cohort 2 had ex vivo IFNγ ELISpot responses above the positive threshold. The ACE2R-blocking antibodies and ex vivo IFNγ ELISpot responses at 12 weeks post-first dose, significantly correlated with levels 12 weeks post second dose (Spearman's r=0.46, p=0.008) and (Spearman's r=0.71, p<0.0001) respectively. CONCLUSIONS: Both dosing schedules resulted in high levels of antibody and T cell responses post vaccination, although those with a longer dosing gap had a higher magnitude of responses, possibly as immune responses were measured 6 weeks post second dose compared to 12 weeks post second dose.

17.
medRxiv ; 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34704105

ABSTRACT

BACKGROUND: To determine the kinetics and persistence of immune responses following the Sinopharm/BBIBP-CorV, we investigated immune responses in a cohort of Sri Lankan individuals. METHODS: SARS-CoV-2 specific total antibodies were measured in 20-to-39 year (n=61), 40-to-59-year and those >60 years of age (n=22) by ELISA, 12 weeks after the second dose of the vaccine. ACE2 receptor blocking antibodies (ACE2R-Ab), antibodies to the receptor binding domain (RBD) of the ancestral virus (WT) and variants of concern, were measured in a sub cohort. T cell responses and memory B cell responses were assessed by ELISpot assays. RESULTS: 193/203 (95.07%) of individuals had detectable SARS-CoV-2 specific total antibodies, while 67/110 (60.9%) had ACE2R-Ab. 14.3% to 16.7% individuals in the 20 to 39 age groups had detectable antibodies to the RBD of the WT and VOC, while the positivity rates of those >60 years of age was <10%. 14/49 (28.6%) had IFN γ ELISpot responses to overlapping peptides of the spike protein, while memory B cell responses were detected in 9/20 to the S1 recombinant protein. The total antibody levels and ACE2R-Ab declined after 2 to 12 weeks from the second dose, while ex vivo T cell responses remained unchanged. The decline in ACE2R-Ab levels was significant among the 40 to 59 (p=0.0007) and ≥60 (p=0.005) age groups. CONCLUSIONS: Antibody responses declined in all age groups, especially in those >60 years, while T cell responses persisted. The effect of waning of immunity on hospitalization and severe disease should be assessed by long term efficacy studies.

18.
iScience ; 24(10): 103144, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34545347

ABSTRACT

The coronavirus disease 2019 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus, is a global health issue with unprecedented challenges for public health. SARS-CoV-2 primarily infects cells of the respiratory tract via spike glycoprotein binding to angiotensin-converting enzyme (ACE2). Circadian rhythms coordinate an organism's response to its environment and can regulate host susceptibility to virus infection. We demonstrate that silencing the circadian regulator Bmal1 or treating lung epithelial cells with the REV-ERB agonist SR9009 reduces ACE2 expression and inhibits SARS-CoV-2 entry and replication. Importantly, treating infected cells with SR9009 limits SARS-CoV-2 replication and secretion of infectious particles, showing that post-entry steps in the viral life cycle are influenced by the circadian system. Transcriptome analysis revealed that Bmal1 silencing induced interferon-stimulated gene transcripts in Calu-3 lung epithelial cells, providing a mechanism for the circadian pathway to limit SARS-CoV-2 infection. Our study highlights alternative approaches to understand and improve therapeutic targeting of SARS-CoV-2.

19.
Nat Commun ; 12(1): 5061, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404775

ABSTRACT

The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Carrier Proteins , Epitopes , Humans , Immunity , SARS-CoV-2/drug effects , T-Lymphocytes/immunology
20.
Nat Commun ; 12(1): 4617, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326317

ABSTRACT

Several COVID-19 vaccines have received emergency approval. Here we assess the immunogenicity of a single dose of the AZD1222 vaccine, at one month, in a cohort of health care workers (HCWs) (629 naïve and 26 previously infected). 93.4% of naïve HCWs seroconverted, irrespective of age and gender. Haemagglutination test for antibodies to the receptor binding domain (RBD), surrogate neutralization assay (sVNT) and ex vivo IFNγ ELISpot assays were carried out in a sub-cohort. ACE2 blocking antibodies (measured by sVNT) were detected in 67/69 (97.1%) of naïve HCWs. Antibody levels to the RBD of the wild-type virus were higher than to RBD of B.1.1.7, and titres to B.1.351 were very low. Ex vivo T cell responses were observed in 30.8% to 61.7% in naïve HCWs. Previously infected HCWs, developed significantly higher (p < 0.0001) ACE2 blocking antibodies and antibodies to the RBD for the variants B.1.1.7 and B.1.351. This study shows high seroconversion after one vaccine dose, but also suggests that one vaccine dose may be insufficient to protect against emerging variants.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/biosynthesis , COVID-19/prevention & control , COVID-19/virology , ChAdOx1 nCoV-19 , Dose-Response Relationship, Immunologic , Female , Health Personnel , Humans , Immunity , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL