Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
2.
Dev Dyn ; 251(5): 877-884, 2022 05.
Article in English | MEDLINE | ID: mdl-34719815

ABSTRACT

BACKGROUND: Fibroblast growth factors (Fgfs) are required for survival and organ formation during embryogenesis. Fgfs often execute their functions redundantly. Previous analysis of Fgf3 mutants revealed effects on inner ear formation and embryonic survival with incomplete penetrance. RESULTS: Here, we show that presence of a neomycin resistance gene (neo) replacing the Fgf3 coding region leads to reduced survival during embryogenesis and an increased penetrance of inner ear defects. Fgf3neo/neo mutants showed reduced expression of Fgf4, which is positioned in close proximity to the Fgf3 locus in the mouse genome. Conditional inactivation of Fgf4 during inner ear development on a Fgf3 null background using Fgf3/4 cis mice revealed a redundant requirement between these Fgfs during otic placode induction. In contrast, inactivation of Fgf3 and Fgf4 in the pharyngeal region where both Fgfs are also co-expressed using a Foxg1-Cre driver did not affect development of the pharyngeal arches. However, these mutants showed reduced perinatal survival. CONCLUSIONS: These results highlight the importance of Fgf signaling during development. In particular, different members of the Fgf family act redundantly to guarantee inner ear formation and embryonic survival.


Subject(s)
Ear, Inner , Fibroblast Growth Factors , Animals , Ectoderm/metabolism , Female , Fibroblast Growth Factor 3/genetics , Fibroblast Growth Factor 3/metabolism , Fibroblast Growth Factor 4 , Fibroblast Growth Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Multigene Family , Nerve Tissue Proteins/genetics , Pregnancy
3.
Front Cell Dev Biol ; 9: 679325, 2021.
Article in English | MEDLINE | ID: mdl-34124068

ABSTRACT

Meis genes have been shown to control essential processes during development of the central and peripheral nervous system. Here we have explored the roles of the Meis2 gene during vertebrate inner ear induction and the formation of the cochlea. Meis2 is expressed in several tissues required for inner ear induction and in non-sensory tissue of the cochlear duct. Global inactivation of Meis2 in the mouse leads to a severely reduced size of the otic vesicle. Tissue-specific knock outs of Meis2 reveal that its expression in the hindbrain is essential for otic vesicle formation. Inactivation of Meis2 in the inner ear itself leads to an aberrant coiling of the cochlear duct. By analyzing transcriptomes obtained from Meis2 mutants and ChIPseq analysis of an otic cell line, we define candidate target genes for Meis2 which may be directly or indirectly involved in cochlear morphogenesis. Taken together, these data show that Meis2 is essential for inner ear formation and provide an entry point to unveil the network underlying proper coiling of the cochlear duct.

4.
Front Mol Neurosci ; 14: 642679, 2021.
Article in English | MEDLINE | ID: mdl-33841098

ABSTRACT

Numerous studies indicate that deficits in the proper integration or migration of specific GABAergic precursor cells from the subpallium to the cortex can lead to severe cognitive dysfunctions and neurodevelopmental pathogenesis linked to intellectual disabilities. A different set of GABAergic precursors cells that express Pax2 migrate to hindbrain regions, targeting, for example auditory or somatosensory brainstem regions. We demonstrate that the absence of BDNF in Pax2-lineage descendants of Bdnf Pax2 KOs causes severe cognitive disabilities. In Bdnf Pax2 KOs, a normal number of parvalbumin-positive interneurons (PV-INs) was found in the auditory cortex (AC) and hippocampal regions, which went hand in hand with reduced PV-labeling in neuropil domains and elevated activity-regulated cytoskeleton-associated protein (Arc/Arg3.1; here: Arc) levels in pyramidal neurons in these same regions. This immaturity in the inhibitory/excitatory balance of the AC and hippocampus was accompanied by elevated LTP, reduced (sound-induced) LTP/LTD adjustment, impaired learning, elevated anxiety, and deficits in social behavior, overall representing an autistic-like phenotype. Reduced tonic inhibitory strength and elevated spontaneous firing rates in dorsal cochlear nucleus (DCN) brainstem neurons in otherwise nearly normal hearing Bdnf Pax2 KOs suggests that diminished fine-grained auditory-specific brainstem activity has hampered activity-driven integration of inhibitory networks of the AC in functional (hippocampal) circuits. This leads to an inability to scale hippocampal post-synapses during LTP/LTD plasticity. BDNF in Pax2-lineage descendants in lower brain regions should thus be considered as a novel candidate for contributing to the development of brain disorders, including autism.

5.
Brain Sci ; 10(10)2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33036168

ABSTRACT

Age-related decoupling of auditory nerve fibers from hair cells (cochlear synaptopathy) has been linked to temporal processing deficits and impaired speech recognition performance. The link between both is elusive. We have previously demonstrated that cochlear synaptopathy, if centrally compensated through enhanced input/output function (neural gain), can prevent age-dependent temporal discrimination loss. It was also found that central neural gain after acoustic trauma was linked to hippocampal long-term potentiation (LTP) and upregulation of brain-derived neurotrophic factor (BDNF). Using middle-aged and old BDNF-live-exon-visualization (BLEV) reporter mice we analyzed the specific recruitment of LTP and the activity-dependent usage of Bdnf exon-IV and -VI promoters relative to cochlear synaptopathy and central (temporal) processing. For both groups, specimens with higher or lower ability to centrally compensate diminished auditory nerve activity were found. Strikingly, low compensating mouse groups differed from high compensators by prolonged auditory nerve latency. Moreover, low compensators exhibited attenuated responses to amplitude-modulated tones, and a reduction of hippocampal LTP and Bdnf transcript levels in comparison to high compensators. These results suggest that latency of auditory nerve processing, recruitment of hippocampal LTP, and Bdnf transcription, are key factors for age-dependent auditory processing deficits, rather than cochlear synaptopathy or aging per se.

6.
J Neurosci Res ; 98(9): 1764-1779, 2020 09.
Article in English | MEDLINE | ID: mdl-31663646

ABSTRACT

Glial-derived neurotrophic factor (GDNF) has been proposed as a potent neurotrophic factor with the potential to cure neurodegenerative diseases. In the cochlea, GDNF has been detected in auditory neurons and sensory receptor cells and its expression is upregulated upon trauma. Moreover, the application of GDNF in different animal models of deafness has shown its capacity to prevent hearing loss and promoted its future use in therapeutic trials in humans. In the present study we have examined the endogenous requirement of GDNF during auditory development in mice. Using a lacZ knockin allele we have confirmed the expression of GDNF in the cochlea including its sensory regions during development. Global inactivation of GDNF throughout the hearing system using a Foxg1-Cre line causes perinatal lethality but reveals no apparent defects during formation of the cochlea. Using TrkC-Cre and Atoh1-Cre lines, we were able to generate viable mutants lacking GDNF in auditory neurons or both auditory neurons and sensory hair cells. These mutants show normal frequency-dependent auditory thresholds. However, mechanoelectrical response properties of outer hair cells (OHCs) in TrkC-Cre GDNF mutants are altered at low thresholds. Furthermore, auditory brainstem wave analysis shows an abnormal increase of wave I. On the other hand, Atoh1-Cre GDNF mutants show normal OHC function but their auditory brainstem wave pattern is reduced at the levels of wave I, III and IV. These results show that GDNF expression during the development is required to maintain functional hearing at different levels of the auditory system.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/deficiency , Glial Cell Line-Derived Neurotrophic Factor/physiology , Hearing/physiology , Animals , Auditory Threshold , Cochlea/metabolism , Ear, Inner/metabolism , Evoked Potentials, Auditory, Brain Stem , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Hair Cells, Auditory/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Sci Rep ; 9(1): 2410, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787404

ABSTRACT

Spread of antimicrobial resistance and shortage of novel antibiotics have led to an urgent need for new antibacterials. Although aminoglycoside antibiotics (AGs) are very potent anti-infectives, their use is largely restricted due to serious side-effects, mainly nephrotoxicity and ototoxicity. We evaluated the ototoxicity of various AGs selected from a larger set of AGs on the basis of their strong antibacterial activities against multidrug-resistant clinical isolates of the ESKAPE panel: gentamicin, gentamicin C1a, apramycin, paromomycin and neomycin. Following local round window application, dose-dependent effects of AGs on outer hair cell survival and compound action potentials showed gentamicin C1a and apramycin as the least toxic. Strikingly, although no changes were observed in compound action potential thresholds and outer hair cell survival following treatment with low concentrations of neomycin, gentamicin and paromomycin, the number of inner hair cell synaptic ribbons and the compound action potential amplitudes were reduced. This indication of hidden hearing loss was not observed with gentamicin C1a or apramycin at such concentrations. These findings identify the inner hair cells as the most vulnerable element to AG treatment, indicating that gentamicin C1a and apramycin are promising bases for the development of clinically useful antibiotics.


Subject(s)
Anti-Bacterial Agents/adverse effects , Gentamicins/pharmacology , Hearing Loss/genetics , Nebramycin/analogs & derivatives , Ototoxicity/metabolism , Aminoglycosides/adverse effects , Aminoglycosides/pharmacology , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Cell Line , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Gentamicins/adverse effects , Gentamicins/therapeutic use , Guinea Pigs , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/pathology , Hearing Loss/chemically induced , Hearing Loss/pathology , Humans , Nebramycin/adverse effects , Nebramycin/pharmacology , Neomycin/adverse effects , Neomycin/pharmacology , Ototoxicity/pathology , Protein Synthesis Inhibitors/adverse effects , Protein Synthesis Inhibitors/pharmacology , Round Window, Ear/drug effects , Round Window, Ear/pathology
8.
Development ; 146(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30642836

ABSTRACT

Myc is considered an essential transcription factor for heart development, but cardiac defects have only been studied in global Myc loss-of-function models. Here, we eliminated Myc by recombining a Myc floxed allele with the Nkx2.5Cre driver. We observed no anatomical, cellular or functional alterations in either fetuses or adult cardiac Myc-deficient mice. We re-examined Myc expression during development and found no expression in developing cardiomyocytes. In contrast, we confirmed that Mycn is essential for cardiomyocyte proliferation and cardiogenesis. Mosaic Myc overexpression in a Mycn-deficient background shows that Myc can replace Mycn function, recovering heart development. We further show that this recovery involves the elimination of Mycn-deficient cells by cell competition. Our results indicate that Myc is dispensable in cardiomyocytes both during cardiogenesis and for adult heart homeostasis, and that Mycn is exclusively responsible for cardiomyocyte proliferation during heart development. Nonetheless, our results show that Myc can functionally replace Mycn We also show that cardiomyocytes compete according to their combined Myc and Mycn levels and that cell competition eliminates flawed cardiomyocytes, suggesting its relevance as a quality control mechanism in cardiac development.


Subject(s)
Cell Proliferation , Heart/embryology , Myocytes, Cardiac/metabolism , N-Myc Proto-Oncogene Protein/deficiency , Organogenesis , Proto-Oncogene Proteins c-myc/metabolism , Animals , Female , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-myc/genetics
9.
Front Mol Neurosci ; 11: 325, 2018.
Article in English | MEDLINE | ID: mdl-30319348

ABSTRACT

Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for B DNF- l ive- e xon- v isualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications.

10.
Front Mol Neurosci ; 11: 260, 2018.
Article in English | MEDLINE | ID: mdl-30127717

ABSTRACT

Activity-dependent BDNF (brain-derived neurotrophic factor) expression is hypothesized to be a cue for the context-specificity of memory formation. So far, activity-dependent BDNF cannot be explicitly monitored independently of basal BDNF levels. We used the BLEV ( B DNF- live-exon- visualization) reporter mouse to specifically detect activity-dependent usage of Bdnf exon-IV and -VI promoters through bi-cistronic co-expression of CFP and YFP, respectively. Enriching acoustic stimuli led to improved peripheral and central auditory brainstem responses, increased Schaffer collateral LTP, and enhanced performance in the Morris water maze. Within the brainstem, neuronal activity was increased and accompanied by a trend for higher expression levels of Bdnf exon-IV-CFP and exon-VI-YFP transcripts. In the hippocampus BDNF transcripts were clearly increased parallel to changes in parvalbumin expression and were localized to specific neurons and capillaries. Severe acoustic trauma, in contrast, elevated neither Bdnf transcript levels, nor auditory responses, parvalbumin or LTP. Together, this suggests that critical sensory input is essential for recruitment of activity-dependent auditory-specific BDNF expression that may shape network adaptation.

11.
PLoS One ; 13(7): e0200210, 2018.
Article in English | MEDLINE | ID: mdl-29979748

ABSTRACT

Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.


Subject(s)
Cell Transdifferentiation/physiology , Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cell Lineage/drug effects , Cell Lineage/genetics , Cell Lineage/physiology , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epidermal Growth Factor/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression/drug effects , Hair Cells, Auditory/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Myosin VIIa , Myosins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factor Brn-3C/genetics , Transcription Factor Brn-3C/metabolism , Transcription Factors/genetics , Tretinoin/pharmacology
12.
Cell Physiol Biochem ; 47(4): 1509-1532, 2018.
Article in English | MEDLINE | ID: mdl-29940568

ABSTRACT

BACKGROUND/AIMS: From invertebrates to mammals, Gαi proteins act together with their common binding partner Gpsm2 to govern cell polarization and planar organization in virtually any polarized cell. Recently, we demonstrated that Gαi3-deficiency in pre-hearing murine cochleae pointed to a role of Gαi3 for asymmetric migration of the kinocilium as well as the orientation and shape of the stereociliary ("hair") bundle, a requirement for the progression of mature hearing. We found that the lack of Gαi3 impairs stereociliary elongation and hair bundle shape in high-frequency cochlear regions, linked to elevated hearing thresholds for high-frequency sound. How these morphological defects translate into hearing phenotypes is not clear. METHODS: Here, we studied global and conditional Gnai3 and Gnai2 mouse mutants deficient for either one or both Gαi proteins. Comparative analyses of global versus Foxg1-driven conditional mutants that mainly delete in the inner ear and telencephalon in combination with functional tests were applied to dissect essential and redundant functions of different Gαi isoforms and to assign specific defects to outer or inner hair cells, the auditory nerve, satellite cells or central auditory neurons. RESULTS: Here we report that lack of Gαi3 but not of the ubiquitously expressed Gαi2 elevates hearing threshold, accompanied by impaired hair bundle elongation and shape in high-frequency cochlear regions. During the crucial reprogramming of the immature inner hair cell (IHC) synapse into a functional sensory synapse of the mature IHC deficiency for Gαi2 or Gαi3 had no impact. In contrast, double-deficiency for Gαi2 and Gαi3 isoforms results in abnormalities along the entire tonotopic axis including profound deafness associated with stereocilia defects. In these mice, postnatal IHC synapse maturation is also impaired. In addition, the analysis of conditional versus global Gαi3-deficient mice revealed that the amplitude of ABR wave IV was disproportionally elevated in comparison to ABR wave I indicating that Gαi3 is selectively involved in generation of neural gain during auditory processing. CONCLUSION: We propose a so far unrecognized complexity of isoform-specific and overlapping Gαi protein functions particular during final differentiation processes.


Subject(s)
Carrier Proteins/metabolism , Forkhead Transcription Factors/metabolism , GTP-Binding Protein alpha Subunit, Gi2/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Hair Cells, Auditory, Inner/metabolism , Hearing/physiology , Nerve Tissue Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Cycle Proteins , Forkhead Transcription Factors/genetics , GTP-Binding Protein alpha Subunit, Gi2/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Hair Cells, Auditory, Inner/cytology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics
13.
PLoS Genet ; 12(5): e1006018, 2016 05.
Article in English | MEDLINE | ID: mdl-27144312

ABSTRACT

During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease.


Subject(s)
Bone Morphogenetic Protein 4/genetics , Carrier Proteins/genetics , Fibroblast Growth Factor 3/genetics , Neural Crest/metabolism , Neural Tube Defects/genetics , Animals , Body Patterning/genetics , Bone Morphogenetic Protein 4/metabolism , Carrier Proteins/metabolism , Cell Death/genetics , Fibroblast Growth Factor 3/metabolism , Gene Expression Regulation, Developmental , Humans , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Neural Crest/growth & development , Neural Tube/growth & development , Neural Tube/metabolism , Neural Tube Defects/metabolism , Neural Tube Defects/pathology , Signal Transduction/genetics , Somites/growth & development , Somites/metabolism
14.
J Anat ; 228(2): 255-69, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26403558

ABSTRACT

The identification of transcriptional differences has served as an important starting point in understanding the molecular mechanisms behind biological processes and systems. The developmental biology of the inner ear, the biology of hearing and of course the pathology of deafness are all processes that warrant a molecular description if we are to improve human health. To this end, technological innovation has meant that larger scale analysis of gene transcription has been possible for a number of years now, extending our molecular analysis of genes to beyond those that are currently in vogue for a given system. In this review, some of the contributions gene profiling has made to understanding developmental, pathological and physiological processes in the inner ear are highlighted.


Subject(s)
Ear, Inner/physiology , Gene Expression Profiling , Animals , Deafness/genetics , Ear, Inner/embryology , Gene Expression Profiling/methods , Hearing/genetics , Hearing/physiology , Humans , Microarray Analysis
15.
Mol Neurobiol ; 53(8): 5607-27, 2016 10.
Article in English | MEDLINE | ID: mdl-26476841

ABSTRACT

For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF (Pax2) -KO) versus the auditory cortex and hippocampus (BDNF (TrkC) -KO). We demonstrate that BDNF (Pax2) -KO but not BDNF (TrkC) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF (Pax2) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF (Pax2) -KO, but not of BDNF (TrkC) -KO mice. Also, BDNF (Pax2) -WT but not BDNF (Pax2) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.


Subject(s)
Auditory Cortex/pathology , Auditory Cortex/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Noise , Animals , Auditory Cortex/metabolism , Auditory Threshold , Cochlea/metabolism , Evoked Potentials, Auditory, Brain Stem , Gene Deletion , Hearing , Inferior Colliculi/pathology , Inferior Colliculi/physiopathology , Integrases/metabolism , Mice, Knockout , Promoter Regions, Genetic/genetics , Receptor, trkC/metabolism , Risk Factors
16.
Development ; 142(16): 2792-800, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26160903

ABSTRACT

Transcriptional regulatory networks are essential during the formation and differentiation of organs. The transcription factor N-myc is required for proper morphogenesis of the cochlea and to control correct patterning of the organ of Corti. We show here that the Otx2 gene, a mammalian ortholog of the Drosophila orthodenticle homeobox gene, is a crucial target of N-myc during inner ear development. Otx2 expression is lost in N-myc mouse mutants, and N-myc misexpression in the chick inner ear leads to ectopic expression of Otx2. Furthermore, Otx2 enhancer activity is increased by N-myc misexpression, indicating that N-myc may directly regulate Otx2. Inactivation of Otx2 in the mouse inner ear leads to ectopic expression of prosensory markers in non-sensory regions of the cochlear duct. Upon further differentiation, these domains give rise to an ectopic organ of Corti, together with the re-specification of non-sensory areas into sensory epithelia, and the loss of Reissner's membrane. Therefore, the Otx2-positive domain of the cochlear duct shows a striking competence to develop into a mirror-image copy of the organ of Corti. Taken together, these data show that Otx2 acts downstream of N-myc and is essential for patterning and spatial restriction of the sensory domain of the mammalian cochlea.


Subject(s)
Cochlea/embryology , Gene Expression Regulation, Developmental/physiology , Hearing/physiology , Morphogenesis/physiology , Otx Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cochlea/metabolism , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Transgenic
17.
Dev Neurobiol ; 74(6): 643-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24376126

ABSTRACT

N-myc belongs to the myc proto-oncogene family, which is involved in numerous cellular processes such as proliferation, growth, apoptosis, and differentiation. Conditional deletion of N-myc in the mouse nervous system disrupted brain development, indicating that N-myc plays an essential role during neural development. How the development of the olfactory epithelium and neurogenesis within are affected by the loss of N-myc has, however, not been determined. To address these issues, we examined an N-myc(Foxg1Cre) conditional mouse line, in which N-myc is depleted in the olfactory epithelium. First changes in N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a complete lack of Hes5-positive progenitor cells, decreased proliferation, and neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination with smaller neurons might explain the morphological defects in the N-myc depleted olfactory structures. Moreover, our results suggest an important role for N-myc in regulating ongoing neurogenesis, in part by maintaining the Hes5-positive progenitor pool. In summary, our results provide evidence that N-myc deficiency in the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative consequences at structural and cellular levels.


Subject(s)
Cell Proliferation/genetics , Gene Expression Regulation, Developmental/genetics , Morphogenesis/genetics , Neurogenesis/genetics , Olfactory Mucosa/embryology , Proto-Oncogene Proteins c-myc/deficiency , Age Factors , Animals , Embryo, Mammalian , Gonadotropin-Releasing Hormone/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Olfactory Mucosa/cytology , Olfactory Pathways/anatomy & histology , Olfactory Pathways/enzymology , Proto-Oncogene Proteins c-myc/genetics , Vomeronasal Organ/cytology , Vomeronasal Organ/embryology
18.
Front Mol Neurosci ; 6: 20, 2013.
Article in English | MEDLINE | ID: mdl-23950737

ABSTRACT

Voltage-gated L-type Ca(2+) channels (L-VGCCs) like CaV1.2 are assumed to play a crucial role for controlling release of trophic peptides including brain-derived neurotrophic factor (BDNF). In the inner ear of the adult mouse, besides the well-described L-VGCC CaV1.3, CaV1.2 is also expressed. Due to lethality of constitutive CaV1.2 knock-out mice, the function of this ion channel as well as its putative relationship to BDNF in the auditory system is entirely elusive. We recently described that BDNF plays a differential role for inner hair cell (IHC) vesicles release in normal and traumatized condition. To elucidate a presumptive role of CaV1.2 during this process, two tissue-specific conditional mouse lines were generated. To distinguish the impact of CaV1.2 on the cochlea from that on feedback loops from higher auditory centers CaV1.2 was deleted, in one mouse line, under the Pax2 promoter (CaV1.2(Pax2)) leading to a deletion in the spiral ganglion neurons, dorsal cochlear nucleus, and inferior colliculus. In the second mouse line, the Egr2 promoter was used for deleting CaV1.2 (CaV1.2(Egr2)) in auditory brainstem nuclei. In both mouse lines, normal hearing threshold and equal number of IHC release sites were observed. We found a slight reduction of auditory brainstem response wave I amplitudes in the CaV1.2(Pax2) mice, but not in the CaV1.2(Egr2) mice. After noise exposure, CaV1.2(Pax2) mice had less-pronounced hearing loss that correlated with maintenance of ribbons in IHCs and less reduced activity in auditory nerve fibers, as well as in higher brain centers at supra-threshold sound stimulation. As reduced cochlear BDNF mRNA levels were found in CaV1.2(Pax2) mice, we suggest that a CaV1.2-dependent step may participate in triggering part of the beneficial and deteriorating effects of cochlear BDNF in intact systems and during noise exposure through a pathway that is independent of CaV1.2 function in efferent circuits.

19.
Semin Cell Dev Biol ; 24(5): 507-13, 2013 May.
Article in English | MEDLINE | ID: mdl-23665151

ABSTRACT

Cell cycle exit and acquirement of a postmitotic state is essential for the proper development of organs. In the present review, we examine the role of the cell cycle control in the sensory epithelia of the mammalian inner ear. We describe the roles of the core cell cycle regulators in the proliferation of prosensory cells and in the initiation and maintenance of terminal mitosis of the sensory epithelia. We also discuss how other intracellular signalling may influence the cell cycle. Finally, we address the question of whether manipulations of the cell cycle may have the potential to create replacement cells for the damaged inner sensory epithelia.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle/genetics , Hair Cells, Auditory/physiology , Labyrinth Supporting Cells/physiology , Receptors, Notch/genetics , Animals , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Gene Expression Regulation, Developmental , Hair Cells, Auditory/cytology , Humans , Labyrinth Supporting Cells/cytology , Morphogenesis/physiology , Receptors, Notch/metabolism , Regeneration , Signal Transduction
20.
Mech Dev ; 130(2-3): 160-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23041177

ABSTRACT

Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.


Subject(s)
Body Patterning/genetics , Endolymphatic Duct/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Animals , Down-Regulation , Ear, Inner/embryology , Ear, Inner/metabolism , Endolymphatic Duct/metabolism , Fibroblast Growth Factor 3/genetics , Fibroblast Growth Factor 3/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Deletion , Gene Expression , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Rhombencephalon/embryology , Rhombencephalon/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wnt1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...