Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36978486

ABSTRACT

In the context of the global health issue caused by the growing occurrence of antimicrobial resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a computer-aided drug design (CADD) based on a 'scaffold-hopping' approach for the synthesis and antibacterial evaluation of fac-Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate ligand. The prepared molecules were selected following a pre-screening in silico analysis according to modification of the 2,2'-bipyridine (bpy) ligand in the coordination sphere of the complexes. CADD pointed to chiral 4,5-pinene and 5,6-pinene bipyridine derivatives as the most promising candidates. The corresponding complexes were synthesized, tested toward methicillin-sensitive and -resistant S. aureus strains, and the obtained results evaluated with regard to their binding affinity with a homology model of the S. aureus MurG enzyme. Overall, the title species revealed very similar minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as those of the reference compound used as the scaffold in our approach. The obtained docking scores advocate the viability of 'scaffold-hopping' for de novo design, a potential strategy for more cost- and time-efficient discovery of new antibiotics.

2.
Dalton Trans ; 52(20): 6934-6944, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36916301

ABSTRACT

We report the synthesis, characterization, and in vivo evaluation of the anticancer activity of a series of 5- and 6-(halomethyl)-2,2'-bipyridine rhenium tricarbonyl complexes. The study was promoted in order to understand if the presence and position of a reactive halomethyl substituent on the diimine ligand system of fac-[Re(CO)3]+ species may be a key molecular feature for the design of active and non-toxic anticancer agents. Only compounds potentially able to undergo ligand-based alkylating reactions show significant antiproliferative activity against colorectal and pancreatic cell lines. Of the new species presented in this study, one compound (5-(chloromethyl)-2,2'-bipyridine derivative) shows significant inhibition of pancreatic tumour growth in vivo in zebrafish-Panc-1 xenografts. The complex is noticeably effective at 8 µM concentration, lower than its in vitro IC50 values, being also capable of inhibiting in vivo cancer cells dissemination.


Subject(s)
Coordination Complexes , Heterocyclic Compounds , Rhenium , Animals , Humans , 2,2'-Dipyridyl , Ligands , Zebrafish , Coordination Complexes/pharmacology
3.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145328

ABSTRACT

Antimicrobial resistance is one of the major human health threats, with significant impacts on the global economy. Antibiotics are becoming increasingly ineffective as drug-resistance spreads, imposing an urgent need for new and innovative antimicrobial agents. Metal complexes are an untapped source of antimicrobial potential. Rhenium complexes, amongst others, are particularly attractive due to their low in vivo toxicity and high antimicrobial activity, but little is known about their targets and mechanism of action. In this study, a series of rhenium di- and tricarbonyl diimine complexes were prepared and evaluated for their antimicrobial potential against eight different microorganisms comprising Gram-negative and -positive bacteria. Our data showed that none of the Re dicarbonyl or neutral tricarbonyl species have either bactericidal or bacteriostatic potential. In order to identify possible targets of the molecules, and thus possibly understand the observed differences in the antimicrobial efficacy of the molecules, we computationally evaluated the binding affinity of active and inactive complexes against structurally characterized membrane-bound S. aureus proteins. The computational analysis indicates two possible major targets for this class of compounds, namely lipoteichoic acids flippase (LtaA) and lipoprotein signal peptidase II (LspA). Our results, consistent with the published in vitro studies, will be useful for the future design of rhenium tricarbonyl diimine-based antibiotics.

4.
Molecules ; 27(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35056856

ABSTRACT

Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Rhenium/chemistry , Rhenium/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Humans , Luminescent Agents/chemistry , Luminescent Agents/pharmacology , Luminescent Agents/therapeutic use , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Organometallic Compounds/therapeutic use , Rhenium/therapeutic use
5.
Chimia (Aarau) ; 75(10): 837-844, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34728010

ABSTRACT

Luminescent rhenium complexes continue to be the focus of growing scientific interest for catalytic, diagnostic and therapeutic applications, with emphasis on the development of their photophysical and photochemical properties. In this short review, we explore such properties with a focus on the biological applications of the molecules. We discuss the importance of the ligand choice to the contribution and their involvement towards the most significant electronic transitions of the metal species and what strategies are used to exploit the potential of the molecules in medicinal applications. We begin by detailing the photophysics of the molecules; we then describe the three most common photoreactions of rhenium complexes as photosensitizers in H2 production, photocatalysts in CO2 reduction and photochemical ligand substitution. In the last part, we describe their applications as luminescent cellular probes and how photochemical ligand substitution is utilized in the development of photoactive carbon monoxide-releasing molecules as anticancer and antimicrobial agents.


Subject(s)
Coordination Complexes , Rhenium , Ligands , Photochemistry
6.
Molecules ; 26(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34500734

ABSTRACT

The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)2(NO)(N-N)X]+ species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)2(NO)(N-N)X]+ is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)3]+ complexes bearing π-basic OR-type ligands gave the [Re(CO)2(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)2(NO)(N-N)X]+ complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.

7.
RSC Adv ; 11(13): 7511-7520, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423250

ABSTRACT

New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes are described. The molecules are prepared in high yield from the cis-cis-trans-[Re(CO)2( t Bu2bpy)Br2]- anion (2, where t Bu2bpy is 4,4'-di-tert-butyl-2,2'-bipyridine), which can be isolated from the one electron reduction of the corresponding 17-electron complex (1). Compound 2 is stable in the solid state, but in solution it is oxidized by molecular oxygen back to 1. Replacement of a single bromide of 2 by σ-donor monodentate ligands (Ls) yields stable neutral 18-electron cis-cis-trans-[Re(CO)2( t Bu2bpy)Br(L)] species. In coordinating solvents like methanol the halide is replaced giving the corresponding solvated cations. [Re(CO)2( t Bu2bpy)Br(L)] species can be further reacted with Ls to prepare stable cis-cis-trans-[Re(CO)2( t Bu2bpy)(L)2]+ complexes in good yield. Ligand substitution of Re(i) complexes proceeds via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the cis-cis-trans-complexes, cis-cis-cis- (all cis) isomers are also formed. In particular, cis-cis-trans-[Re(CO)2( t Bu2bpy)(L)2]+ complexes establish an equilibrium with all cis isomers in solution. The solid state crystal structure of nearly all molecules presented could be elucidated. The molecules adopt a slightly distorted octahedral geometry. In comparison to similar fac-[Re(CO)3]+complexes, Re(i) diacarbonyl species are characterized by a bend (ca. 7°) of the axial ligands towards the α-diimine unit. [Re(CO)2( t Bu2bpy)Br2]- and [Re(CO)2( t Bu2bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium cis-[Re(CO)2]+ complexes, offering a convenient entry in the chemistry of the core.

8.
Brain ; 140(9): 2444-2459, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29050400

ABSTRACT

The mitochondrial proteins TRAP1 and HTRA2 have previously been shown to be phosphorylated in the presence of the Parkinson's disease kinase PINK1 but the downstream signalling is unknown. HTRA2 and PINK1 loss of function causes parkinsonism in humans and animals. Here, we identified TRAP1 as an interactor of HTRA2 using an unbiased mass spectrometry approach. In our human cell models, TRAP1 overexpression is protective, rescuing HTRA2 and PINK1-associated mitochondrial dysfunction and suggesting that TRAP1 acts downstream of HTRA2 and PINK1. HTRA2 regulates TRAP1 protein levels, but TRAP1 is not a direct target of HTRA2 protease activity. Following genetic screening of Parkinson's disease patients and healthy controls, we also report the first TRAP1 mutation leading to complete loss of functional protein in a patient with late onset Parkinson's disease. Analysis of fibroblasts derived from the patient reveal that oxygen consumption, ATP output and reactive oxygen species are increased compared to healthy individuals. This is coupled with an increased pool of free NADH, increased mitochondrial biogenesis, triggering of the mitochondrial unfolded protein response, loss of mitochondrial membrane potential and sensitivity to mitochondrial removal and apoptosis. These data highlight the role of TRAP1 in the regulation of energy metabolism and mitochondrial quality control. Interestingly, the diabetes drug metformin reverses mutation-associated alterations on energy metabolism, mitochondrial biogenesis and restores mitochondrial membrane potential. In summary, our data show that TRAP1 acts downstream of PINK1 and HTRA2 for mitochondrial fine tuning, whereas TRAP1 loss of function leads to reduced control of energy metabolism, ultimately impacting mitochondrial membrane potential. These findings offer new insight into mitochondrial pathologies in Parkinson's disease and provide new prospects for targeted therapies.


Subject(s)
HSP90 Heat-Shock Proteins/genetics , Metformin/therapeutic use , Mitochondria/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Case-Control Studies , Cells, Cultured , Fibroblasts/metabolism , HSP90 Heat-Shock Proteins/biosynthesis , High-Temperature Requirement A Serine Peptidase 2 , Humans , Membrane Potential, Mitochondrial/physiology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mutation , NAD/metabolism , Organelle Biogenesis , Oxygen Consumption , Parkinson Disease/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...