Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cereb Cortex ; 32(2): 418-428, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34322692

ABSTRACT

We found a region of the zebrafish pallium that shows selective activation upon change in the numerosity of visual stimuli. Zebrafish were habituated to sets of small dots that changed in individual size, position, and density, while maintaining their numerousness and overall surface. During dishabituation tests, zebrafish faced a change in number (with the same overall surface), in shape (with the same overall surface and number), or in size (with the same shape and number) of the dots, whereas, in a control group, zebrafish faced the same stimuli as during the habituation. Modulation of the expression of the immediate early genes c-fos and egr-1 and in situ hybridization revealed a selective activation of the caudal part of the dorso-central division of the zebrafish pallium upon change in numerosity. These findings support the existence of an evolutionarily conserved mechanism for approximate magnitude and provide an avenue for understanding its underlying molecular correlates.


Subject(s)
Neurons , Zebrafish , Animals , Cerebral Cortex , Neurons/physiology , Zebrafish/physiology
2.
Animals (Basel) ; 11(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34827804

ABSTRACT

It is widely acknowledged that vertebrates can discriminate non-symbolic numerosity using an evolutionarily conserved system dubbed Approximate Number System (ANS). Two main approaches have been used to assess behaviourally numerosity in fish: spontaneous choice tests and operant training procedures. In the first, animals spontaneously choose between sets of biologically-relevant stimuli (e.g., conspecifics, food) differing in quantities (smaller or larger). In the second, animals are trained to associate a numerosity with a reward. Although the ability of fish to discriminate numerosity has been widely documented with these methods, the molecular bases of quantities estimation and ANS are largely unknown. Recently, we combined behavioral tasks with molecular biology assays (e.g c-fos and egr1 and other early genes expression) showing that the thalamus and the caudal region of dorso-central part of the telencephalon seem to be activated upon change in numerousness in visual stimuli. In contrast, the retina and the optic tectum mainly responded to changes in continuous magnitude such as stimulus size. We here provide a review and synthesis of these findings.

3.
Sci Rep ; 10(1): 5769, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32238844

ABSTRACT

Evidence has shown that a variety of vertebrates, including fish, can discriminate collections of visual items on the basis of their numerousness using an evolutionarily conserved system for approximating numerical magnitude (the so-called Approximate Number System, ANS). Here we combine a habituation/dishabituation behavioural task with molecular biology assays to start investigating the neural bases of the ANS in zebrafish. Separate groups of zebrafish underwent a habituation phase with a set of 3 or 9 small red dots, associated with a food reward. The dots changed in size, position and density from trial to trial but maintained their numerousness, and the overall areas of the stimuli was kept constant. During the subsequent dishabituation test, zebrafish faced a change (i) in number (from 3 to 9 or vice versa with the same overall surface), or (ii) in shape (with the same overall surface and number), or (iii) in size (with the same shape and number). A control group of zebrafish was shown the same stimuli as during the habituation. RT-qPCR revealed that the telencephalon and thalamus were characterized by the most consistent modulation of the expression of the immediate early genes c-fos and egr-1 upon change in numerousness; in contrast, the retina and optic tectum responded mainly to changes in stimulus size.


Subject(s)
Zebrafish/physiology , Animals , Discrimination Learning , Genes, Immediate-Early , Habituation, Psychophysiologic , Male , Photic Stimulation , Superior Colliculi/physiology , Telencephalon/physiology , Thalamus/physiology , Visual Perception , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL