Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
RSC Adv ; 10(73): 44973-44980, 2020 12 17.
Article in English | MEDLINE | ID: mdl-35516229

ABSTRACT

CO2 utilization in upsteam oil and gas applications requires CO2-soluble additives such as polymers, surfactants, and other components. Here we report the facile synthesis of CO2-soluble oxidizers composed of judiciously selected organic cations paired with oxidizing anions. [Bu4N]BrO3 and [Bu4N]ClO3 are prepared using a double displacement synthetic strategy, whereby the crystalline product is readily obtained in high yield and structurally characterized using single-crystal X-ray diffraction. The facility of the approach is demonstrated through the preparation of several additional alkylammonium bromate compounds. Static solubility studies using a high-pressure cell with viewing windows showed that tetrabutylammonium compounds could be solubilized using cosolvent-modified CO2. Using 4 mol% ethanol as cosolvent, >3 mM [Bu4N]BrO3 could be dissolved in CO2, while ∼0.75 mM [Bu4N]ClO3 could be dissolved in the same solvent system. The solubility properties of [Bu4N]BrO3 along with its thermal stability up to ∼200 °C suggest that it is a promising oilfield oxidizer that can be utilized in subterranean CO2 applications.

3.
Dalton Trans ; 48(7): 2248-2262, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30605199

ABSTRACT

In this perspective, the development of single-source precursors and their relative advantages over multiple source approaches for the synthesis of metal pnictide solid state materials is explored. Particular efforts in the selective production of iron phosphide materials for catalytic applications are discussed, especially directed towards the hydrogen evolution and oxygen evolution reactions of water splitting.

4.
Chemistry ; 23(23): 5565-5572, 2017 Apr 24.
Article in English | MEDLINE | ID: mdl-28272786

ABSTRACT

The first heterobimetallic phosphide thin film containing iron, manganese, and phosphorus, derived from the single-source precursor FeMn(CO)8 (µ-PH2 ), has been prepared using a home-built metal-organic chemical vapor deposition apparatus. The thin film contains the same ratio of iron, manganese, and phosphorus as the initial precursor. The film becomes oxidized when deposited on a quartz substrate, whereas the film deposited on an alumina substrate provides a more homogeneous product. Powder X-ray diffraction confirms the formation of a metastable, hexagonal FeMnP phase that was previously only observed at temperatures above 1200 °C. Selected area electron diffraction on single crystals isolated from the films was indexed to the hexagonal phase. The effective moment of the films (µeff =3.68 µB ) matches the previously reported theoretical value for the metastable hexagonal phase, whereas the more stable orthorhombic phase is known to be antiferromagnetic. These results not only demonstrate the successful synthesis of a bimetallic, ternary thin film from a single-source precursor, but also the first low temperature approach to the hexagonal phase of FeMnP.

5.
ACS Nano ; 11(4): 4051-4059, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28333437

ABSTRACT

A variety of catalysts have recently been developed for electrocatalytic oxygen evolution, but very few of them can be readily integrated with semiconducting light absorbers for photoelectrochemical or photocatalytic water splitting. Here, we demonstrate an efficient core/shell photoanode with a highly active oxygen evolution electrocatalyst shell (FeMnP) and semiconductor core (rutile TiO2) for photoelectrochemical oxygen evolution reaction. Metal-organic chemical vapor deposition from a single-source precursor was used to ensure good contact between the FeMnP and the TiO2. The TiO2/FeMnP core/shell photoanode reaches the theoretical photocurrent density for rutile TiO2 of 1.8 mA cm-2 at 1.23 V vs reversible hydrogen electrode under simulated 100 mW cm-2 (1 sun) irradiation. The dramatic enhancement is a result of the synergistic effects of the high oxygen evolution reaction activity of FeMnP (delivering an overpotential of 300 mV with a Tafel slope of 65 mV dec-1 in 1 M KOH) and the conductive interlayer between the surface active sites and semiconductor core which boosts the interfacial charge transfer and photocarrier collection. The facile fabrication of the TiO2/FeMnP core/shell nanorod array photoanode offers a compelling strategy for preparing highly efficient photoelectrochemical solar energy conversion devices.

6.
Inorg Chem ; 55(21): 11560-11569, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27740751

ABSTRACT

Six new anionic bismuth-oxido clusters containing trifluoroacetate ligands were prepared. These include two new Bi6O8 clusters: [M(NCMe)2(H2O)4]3[Bi6(µ3-O)4(µ3-OH)4(CF3CO2)12] with an octahedral Bi6O4(OH)4 core (M = Ni, 1a; Co, 1b) and four Bi4O2 clusters, {[Co(NCMe)6][Bi4(µ3-O)2(CF3CO2)10]}n (2a), {[Co{HC(MeCO)2(MeCNH)}2][Bi4(µ3-O)2(CF3CO2)10]·2[CF3CO2]·2[CF3CO2H]·2[H2O]}n (2b), {[Cu(NCMe)4]2[Bi4(µ3-O)2(CF3CO2)10]·2[CF3CO2H]}n (2c), and {[Me4N]2[Bi4(µ3-O)2(CF3CO2)10]·2[CF3CO2H]}n (2d). These are among the first bismuth-oxido anionic clusters synthesized, and the first to have transition metal countercations. The Bi6O8 anion in 1a and 1b is a high-symmetry octahedron. Additionally, two of the new Bi4O2 clusters are arranged in 1D polymeric structures via bridging carboxylate ligands. The cation in compound 2c had not been previously characterized and was also observed in the synthesis of [Co{HC(MeCO)2(MeCNH)}2][Bi(NO3)6] (3). The new compounds were characterized using single crystal X-ray crystallography and elemental analysis.

7.
Inorg Chem ; 55(13): 6679-84, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27310439

ABSTRACT

A series of clusters of the form [Et4N][Fe2(CO)6(µ3-As)}(µ3-EFe(CO)4)], where E is either P or As, were synthesized from [Et4N]2[HAs{Fe(CO)4}3] and ECl3. AsCl3 gives the As-only compound; PCl3 produces compounds having two As atoms with one P atom, or one As atom and two P atoms, and they can exist as two possible isomers, one of which is chiral. The As2P and AsP2 clusters cocrystallize, and their structure as determined by single-crystal X-ray diffraction is given along with the structure of the As-only cluster. Analytical data as well as density functional theory calculations support the formation and geometries of the new molecules.

8.
ACS Appl Mater Interfaces ; 7(2): 1376-82, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25531980

ABSTRACT

Research activity toward the development of new sorbents for carbon dioxide (CO2) capture have been increasing quickly. Despite the variety of existing materials with high surface areas and high CO2 uptake performances, the cost of the materials remains a dominant factor in slowing their industrial applications. Here we report preparation and CO2 uptake performance of microporous carbon materials synthesized from asphalt, a very inexpensive carbon source. Carbonization of asphalt with potassium hydroxide (KOH) at high temperatures (>600 °C) yields porous carbon materials (A-PC) with high surface areas of up to 2780 m(2) g(-1) and high CO2 uptake performance of 21 mmol g(-1) or 93 wt % at 30 bar and 25 °C. Furthermore, nitrogen doping and reduction with hydrogen yields active N-doped materials (A-NPC and A-rNPC) containing up to 9.3% nitrogen, making them nucleophilic porous carbons with further increase in the Brunauer-Emmett-Teller (BET) surface areas up to 2860 m(2) g(-1) for A-NPC and CO2 uptake to 26 mmol g(-1) or 114 wt % at 30 bar and 25 °C for A-rNPC. This is the highest reported CO2 uptake among the family of the activated porous carbonaceous materials. Thus, the porous carbon materials from asphalt have excellent properties for reversibly capturing CO2 at the well-head during the extraction of natural gas, a naturally occurring high pressure source of CO2. Through a pressure swing sorption process, when the asphalt-derived material is returned to 1 bar, the CO2 is released, thereby rendering a reversible capture medium that is highly efficient yet very inexpensive.

SELECTION OF CITATIONS
SEARCH DETAIL
...