Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37627157

ABSTRACT

MicroRNA miR-122 plays a pivotal role in liver function. Despite numerous studies investigating this miRNA, the global network of genes regulated by miR-122 and its contribution to the underlying pathophysiological mechanisms remain largely unknown. To gain a deeper understanding of miR-122 activity, we employed two complementary approaches. Firstly, through transcriptome analysis of polyribosome-bound RNAs, we discovered that miR-122 exhibits potential antagonistic effects on specific transcription factors known to be dysregulated in liver disease, including nuclear respiratory factor-1 (NRF1) and the E2F transcription factor 4 (E2F4). Secondly, through proteome analysis of hepatoma cells transfected with either miR-122 mimic or antagomir, we discovered changes in several proteins associated with increased malignancy. Interestingly, many of these proteins were reported to be transcriptionally regulated by NRF1 and E2F4, six of which we validated as miR-122 targets. Among these, a negative correlation was observed between miR-122 and glucose-6-phosphate dehydrogenase levels in the livers of patients with hepatitis B virus-associated hepatocellular carcinoma. This study provides novel insights into potential alterations of molecular pathway occurring at the early stages of liver disease, driven by the dysregulation of miR-122 and its associated genes.

2.
Artif Intell Med ; 137: 102491, 2023 03.
Article in English | MEDLINE | ID: mdl-36868686

ABSTRACT

The paradigm of evidence-based medicine requires that medical decisions are made on the basis of the best available knowledge published in the literature. Existing evidence is often summarized in the form of systematic reviews and/or meta-reviews and is rarely available in a structured form. Manual compilation and aggregation is costly, and conducting a systematic review represents a high effort. The need to aggregate evidence arises not only in the context of clinical trials, but is also important in the context of pre-clinical animal studies. In this context, evidence extraction is important to support translation of the most promising pre-clinical therapies into clinical trials or to optimize clinical trial design. Aiming at developing methods that facilitate the task of aggregating evidence published in pre-clinical studies, in this paper a new system is presented that automatically extracts structured knowledge from such publications and stores it in a so-called domain knowledge graph. The approach follows the paradigm of model-complete text comprehension by relying on guidance from a domain ontology creating a deep relational data-structure that reflects the main concepts, protocol, and key findings of studies. Focusing on the domain of spinal cord injuries, a single outcome of a pre-clinical study is described by up to 103 outcome parameters. Since the problem of extracting all these variables together is intractable, we propose a hierarchical architecture that incrementally predicts semantic sub-structures according to a given data model in a bottom-up fashion. At the heart of our approach is a statistical inference method that relies on conditional random fields to infer the most likely instance of the domain model given the text of a scientific publication as input. This approach allows modeling dependencies between the different variables describing a study in a semi-joint fashion. We present a comprehensive evaluation of our system to understand the extent to which our system can capture a study in the depth required to enable the generation of new knowledge. We conclude the article with a brief description of some applications of the populated knowledge graph and show the potential implications of our work for supporting evidence-based medicine.


Subject(s)
Comprehension , Spinal Cord Injuries , Animals , Pattern Recognition, Automated , Systematic Reviews as Topic , Evidence-Based Medicine
3.
J Mol Cell Cardiol ; 175: 29-43, 2023 02.
Article in English | MEDLINE | ID: mdl-36493853

ABSTRACT

Regenerating the injured heart remains one of the most vexing challenges in cardiovascular medicine. Cell therapy has shown potential for treatment of myocardial infarction, but low cell retention so far has limited its success. Here we show that intramyocardial injection of highly apoptosis-resistant unrestricted somatic stem cells (USSC) into infarcted rat hearts resulted in an unprecedented thickening of the left ventricular wall with cTnT+/BrdU+ cardiomyocytes that was paralleled by progressively restored ejection fraction. USSC induced significant T-cell enrichment in ischemic tissue with enhanced expression of T-cell related cytokines. Inhibition of T-cell activation by anti-CD28 monoclonal antibody, fully abolished the regenerative response which was restored by adoptive T-cell transfer. Secretome analysis of USSC and lineage tracing studies suggest that USSC secrete paracrine factors over an extended period of time which boosts a T-cell driven endogenous regenerative response mainly from adult cardiomyocytes.


Subject(s)
Adult Stem Cells , Myocardial Infarction , Rats , Animals , T-Lymphocytes , Myocardial Infarction/therapy , Myocytes, Cardiac , Cytokines
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142246

ABSTRACT

Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.


Subject(s)
Fingolimod Hydrochloride , Schwann Cells , Becaplermin/metabolism , Fingolimod Hydrochloride/metabolism , Fingolimod Hydrochloride/pharmacology , Nerve Regeneration/physiology , Phenotype , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Schwann Cells/metabolism , Sphingosine-1-Phosphate Receptors
5.
EBioMedicine ; 83: 104204, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35952494

ABSTRACT

BACKGROUND: Multiple sclerosis is characterised by inflammation, oligodendrocyte loss and axonal demyelination and shows an additional impact on astrocytes, and their polarization. Although a certain degree of spontaneous myelin repair can be observed, disease progression, and aging impair regeneration efforts highlighting the need to better understand glial cell dynamics to establish specific regenerative treatments. METHODS: Applying a chronic demyelination model, we here analysed demyelination and remyelination related effects on astrocytes and stem cell niches and studied the consequences of medrysone application on myelin repair, and astrocyte polarization. FINDINGS: Medrysone induced recovery of mature oligodendrocytes, myelin expression and node formation. In addition, C3d/S100a10 co-expression in astrocytes was enhanced. Moreover, Timp1 expression in C3d positive astrocytes revealed another astrocytic phenotype with a myelination promoting character. INTERPRETATION: Based on these findings, specific astrocyte subpopulations are suggested to act in a myelin regenerative way and manner the regulation of which can be positively modulated by this corticosteroid. FUNDING: This work was supported by the Jürgen Manchot Stiftung, the Research Commission of the medical faculty of the Heinrich-Heine-University of Düsseldorf, the Christiane and Claudia Hempel Foundation for clinical stem cell research and the James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung.


Subject(s)
Demyelinating Diseases , Myelin Sheath , Adrenal Cortex Hormones , Animals , Astrocytes/metabolism , Cuprizone/metabolism , Cuprizone/pharmacology , Demyelinating Diseases/metabolism , Disease Models, Animal , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Pregnenediones
7.
Front Cell Neurosci ; 15: 653075, 2021.
Article in English | MEDLINE | ID: mdl-33796011

ABSTRACT

Neuropathological diseases of the central nervous system (CNS) are frequently associated with impaired differentiation of the oligodendroglial cell lineage and subsequent alterations in white matter structure and dynamics. Down syndrome (DS), or trisomy 21, is the most common genetic cause for cognitive impairments and intellectual disability (ID) and is associated with a reduction in the number of neurons and oligodendrocytes, as well as with hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS and underestimated the role of glial cells as pathogenic players. This also relates to C21ORF91, a protein considered a key modulator of aberrant CNS development in DS. We investigated the role of C21orf91 ortholog in terms of oligodendrogenesis and myelination using database information as well as through cultured primary oligodendroglial precursor cells (OPCs). Upon modulation of C21orf91 gene expression, we found this factor to be important for accurate oligodendroglial differentiation, influencing their capacity to mature and to myelinate axons. Interestingly, C21orf91 overexpression initiates a cell population coexpressing astroglial- and oligodendroglial markers indicating that elevated C21orf91 expression levels induce a gliogenic shift towards the astrocytic lineage reflecting non-equilibrated glial cell populations in DS brains.

8.
EBioMedicine ; 65: 103276, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33714029

ABSTRACT

BACKGROUND: In multiple sclerosis loss of myelin and oligodendrocytes impairs saltatory signal transduction and leads to neuronal loss and functional deficits. Limited capacity of oligodendroglial precursor cells to differentiate into mature cells is the main reason for inefficient myelin repair in the central nervous system. Drug repurposing constitutes a powerful approach for identification of pharmacological compounds promoting this process. METHODS: A phenotypic compound screening using the subcellular distribution of a potent inhibitor of oligodendroglial cell differentiation, namely p57kip2, as differentiation competence marker was conducted. Hit compounds were validated in terms of their impact on developmental cell differentiation and myelination using both rat and human primary cell cultures and organotypic cerebellar slice cultures, respectively. Their effect on spontaneous remyelination was then investigated following cuprizone-mediated demyelination of the corpus callosum. FINDINGS: A number of novel small molecules able to promote oligodendroglial cell differentiation were identified and a subset was found to foster human oligodendrogenesis as well as myelination ex vivo. Among them the steroid danazol and the anthelminthic parbendazole were found to increase myelin repair. INTERPRETATION: We provide evidence that early cellular processes involved in differentiation decisions are applicable for the identification of regeneration promoting drugs and we suggest danazol and parbendazole as potent therapeutic candidates for demyelinating diseases. FUNDING: This work was supported by the Jürgen Manchot Foundation, Düsseldorf; Research Commission of the Medical Faculty of Heinrich-Heine-University Düsseldorf; Christiane and Claudia Hempel Foundation; Stifterverband/Novartisstiftung; James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung and International Progressive MS Alliance (BRAVEinMS).


Subject(s)
Cell Differentiation/drug effects , Myelin Sheath/drug effects , Small Molecule Libraries/pharmacology , Animals , Benzimidazoles/pharmacology , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Danazol/pharmacology , Female , Humans , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Rats , Small Molecule Libraries/chemistry
9.
Int J Mol Sci ; 21(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570968

ABSTRACT

Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.


Subject(s)
Mesenchymal Stem Cells/cytology , Neural Stem Cells/cytology , Oligodendroglia/cytology , Tissue Inhibitor of Metalloproteinase-1/metabolism , Adult Stem Cells/cytology , Animals , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned/chemistry , Female , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , Proteomics , Rats , Stem Cell Transplantation
10.
Sci Rep ; 10(1): 3284, 2020 02 24.
Article in English | MEDLINE | ID: mdl-32094412

ABSTRACT

The contribution of microRNA-mediated posttranscriptional regulation on the final proteome in differentiating cells remains elusive. Here, we evaluated the impact of microRNAs (miRNAs) on the proteome of human umbilical cord blood-derived unrestricted somatic stem cells (USSC) during retinoic acid (RA) differentiation by a systemic approach using next generation sequencing analysing mRNA and miRNA expression and quantitative mass spectrometry-based proteome analyses. Interestingly, regulation of mRNAs and their dedicated proteins highly correlated during RA-incubation. Additionally, RA-induced USSC demonstrated a clear separation from native USSC thereby shifting from a proliferating to a metabolic phenotype. Bioinformatic integration of up- and downregulated miRNAs and proteins initially implied a strong impact of the miRNome on the XXL-USSC proteome. However, quantitative proteome analysis of the miRNA contribution on the final proteome after ectopic overexpression of downregulated miR-27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, respectively, followed by RA-induction revealed only minor proportions of differentially abundant proteins. In addition, only small overlaps of these regulated proteins with inversely abundant proteins in non-transfected RA-treated USSC were observed. Hence, mRNA transcription rather than miRNA-mediated regulation is the driving force for protein regulation upon RA-incubation, strongly suggesting that miRNAs are fine-tuning regulators rather than active primary switches during RA-induction of USSC.


Subject(s)
Fetal Blood/cytology , MicroRNAs/metabolism , Stem Cells/cytology , Tretinoin/pharmacology , Cell Differentiation , Cell Proliferation , Chromatography, Liquid , Computational Biology , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Peptides/chemistry , Phenotype , Proteome , Proteomics , Tandem Mass Spectrometry , Transcriptome
11.
Glia ; 68(2): 393-406, 2020 02.
Article in English | MEDLINE | ID: mdl-31633850

ABSTRACT

Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.


Subject(s)
Gray Matter/metabolism , Neural Stem Cells/cytology , Oligodendroglia/metabolism , White Matter/metabolism , Adult Stem Cells/metabolism , Animals , Astrocytes/metabolism , Cell Differentiation/physiology , Cell Lineage/physiology , Mice, Inbred C57BL , Neuroglia/metabolism , Rats
12.
Biochim Biophys Acta Proteins Proteom ; 1867(12): 140237, 2019 12.
Article in English | MEDLINE | ID: mdl-31202002

ABSTRACT

Proteins are released from cells by different secretory pathways. The secretory pathway via the ER-Golgi route - realized by a signal sequence - is referred to as "classical secretion". In contrast, alternative secretory pathways were summarized as "unconventional protein secretion". Until now, unconventional protein secretion was lacking attention due to the absence of detailed mechanistic insight and limited experimental access. However, there is a growing number of experimental data showing that a large proportion of secreted proteins is released by these alternative routes. Secretomics - the analysis of all secreted proteins of a cell population - offers the opportunity to gain more functional insight into unconventional protein secretion. Several pitfalls in secretome analysis starting with the analyzed cell model and sample preparation to data analysis have to be considered for detailed characterization of the secretome. Here, we highlight the investigation of secretomes by quantitative LC-MS/MS analysis and discuss pitfalls and opportunities in the characterization of unconventionally secreted proteins by secretome analysis.


Subject(s)
Proteome/metabolism , Secretory Pathway , Animals , Humans , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...