Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mob DNA ; 12(1): 9, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33678171

ABSTRACT

BACKGROUND: Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. RESULTS: To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. CONCLUSIONS: Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.

3.
Evol Appl ; 13(5): 935-944, 2020 May.
Article in English | MEDLINE | ID: mdl-32431744

ABSTRACT

Bacillus anthracis, the causative agent of anthrax, is a considerable global health threat affecting wildlife, livestock, and the general public. In this study, whole-genome sequence analysis of over 350 B. anthracis isolates was used to establish a new high-resolution global genotyping framework that is both biogeographically informative and compatible with multiple genomic assays. The data presented in this study shed new light on the diverse global dissemination of this species and indicate that many lineages may be uniquely suited to the geographic regions in which they are found. In addition, we demonstrate that plasmid genomic structure for this species is largely consistent with chromosomal population structure, suggesting vertical inheritance in this bacterium has contributed to its evolutionary persistence. This classification methodology is the first based on population genomic structure for this species and has potential use for local and broader institutions seeking to understand both disease outbreak origins and recent introductions. In addition, we provide access to a newly developed genotyping script as well as the full whole-genome sequence analyses output for this study, allowing future studies to rapidly employ and append their data in the context of this global collection. This framework may act as a powerful tool for public health agencies, wildlife disease laboratories, and researchers seeking to utilize and expand this classification scheme for further investigations into B. anthracis evolution.

4.
Mol Biol Evol ; 37(7): 1942-1948, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32134458

ABSTRACT

Group II (gII) introns are mobile retroelements that can spread to new DNA sites through retrotransposition, which can be influenced by a variety of host factors. To determine if these host factors bear any relationship to the genomic location of gII introns, we developed a bioinformatic pipeline wherein we focused on the genomic neighborhoods of bacterial gII introns within their native contexts and sought to determine global relationships between introns and their surrounding genes. We found that, although gII introns inhabit diverse regions, these neighborhoods are often functionally enriched for genes that could promote gII intron retention or proliferation. On one hand, we observe that gII introns are frequently found hiding in mobile elements or after transcription terminators. On the other hand, gII introns are enriched in locations in which they could hijack host functions for their movement, potentially timing expression of the intron with genes that produce favorable conditions for retrotransposition. Thus, we propose that gII intron distributions have been shaped by relationships with their surrounding genomic neighbors.


Subject(s)
Genome, Bacterial , Introns , Interspersed Repetitive Sequences , Replicon
SELECTION OF CITATIONS
SEARCH DETAIL