Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (182)2022 04 08.
Article in English | MEDLINE | ID: mdl-35467648

ABSTRACT

Here, we report on selective in vitro models of circuits based on glia (astrocytes, oligodendrocytes, and microglia) and/or neurons from peripheral (dorsal root ganglia) and central tissues (cortex, subventricular zone, organoid) that are dynamically studied in terms of calcium shifts. The model chosen to illustrate the results is the retina, a simple tissue with complex cellular interactions. Calcium is a universal messenger involved in most of the important cellular roles. We explain in a step-by-step protocol how retinal neuron-glial cells in culture can be prepared and evaluated, envisioning calcium shifts. In this model, we differentiate neurons from glia based on their selective response to KCl and ATP. Calcium permeable receptors and channels are selectively expressed in different compartments. To analyze calcium responses, we use ratiometric fluorescent dies such as Fura-2. This probe quantifies free Ca2+ concentration based on Ca2+-free and Ca2+-bound forms, presenting two different peaks, founded on the fluorescence intensity perceived on two wavelengths.


Subject(s)
Calcium , Neuroglia , Astrocytes , Cell Communication/physiology , Neurons
2.
Front Cell Dev Biol ; 7: 303, 2019.
Article in English | MEDLINE | ID: mdl-31850342

ABSTRACT

The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases.

3.
Neurochem Int ; 112: 27-37, 2018 01.
Article in English | MEDLINE | ID: mdl-29108864

ABSTRACT

Endocannabinoids are endogenous lipids that activate selective G protein coupled receptors (CB1 and CB2), mostly found at neuronal presynaptic sites in the nervous system. One of the main consequences of the activation of CB receptors is a decrease in GABA or glutamate release, controlling cell excitability. Here we studied the expression of CB1 and CB2 receptors in E8C8 cultured retina cells (embryonic day 8 and 8 days in vitro) using immunocytochemistry and western blot analysis. We also evaluated their functions in terms of cyclic AMP (cAMP) production, single cell calcium imaging (SCCI) and GABA release induced in basal conditions or activated by l-Aspartate (L-ASP) in cell cultures or under ischemia in young chick retina. We show that both cannabinoid receptors are expressed in retinal neurons and glial cells. WIN 55,212-2 (WIN, a CB1/CB2 agonist) decreased cAMP production in cultured avian embryonic retinal cells in basal conditions. WIN also led to a decrease in the number of glial cells that increased Ca2+ levels evoked by ATP, but had no effect in Ca2+ shifts in neuronal cells activated by KCl. Finally, WIN inhibited [3H]-GABA release induced by KCl or L-ASP, accumulated in amacrine cells, but had no effect in the amount of GABA released in an oxygen glucose deprivation (OGD) condition. Altogether, our data indicate that cannabinoid receptors function as regulators of avian retina signaling at critical embryonic stages during synapse formation.


Subject(s)
Neuroglia/metabolism , Neurons/metabolism , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Retina/embryology , Retina/metabolism , Analgesics/pharmacology , Animals , Benzoxazines/pharmacology , Chick Embryo , Coculture Techniques , Morpholines/pharmacology , Naphthalenes/pharmacology , Neuroglia/drug effects , Neurons/drug effects , Retina/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology
5.
Neurochem Int ; 82: 42-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25700791

ABSTRACT

GABA (γ-amino butyric acid) is the major inhibitory transmitter in the central nervous system and its action is terminated by specific transporters (GAT), found in neurons and glial cells. We have previously described that GAT-3 is responsible for GABA uptake activity in cultured avian Müller cells and that it operates in a Na(+) and Cl(-) dependent manner. Here we show that glutamate decreases [(3)H] GABA uptake in purified cultured glial cells up to 50%, without causing cell death. This effect is mediated by ionotropic glutamatergic receptors. Glutamate inhibition on GABA uptake is not reverted by inhibitors of protein kinase C or modified by agents that modulate cyclic AMP/PKA. Biotinylation experiments demonstrate that this reduction in GABA uptake correlates with a decrease in GAT-3 plasma membrane levels. Interestingly, both GAT-1 and GAT-3 mRNA levels are also decreased by glutamate. Conditioned media (CM) prepared from retinal neurons could also decrease GABA influx, and glutamate receptor antagonists (MK-801 + CNQX) were able to prevent this effect. However, glutamate levels in CM were not different from those found in fresh media, indicating that a glutamatergic co-agonist or modulator could be regulating GABA uptake by Müller cells in this scenario. In the whole avian retina, GAT-3 is present from embryonic day 5 (E5) increasing up to the end of embryonic development and post-hatch period exclusively in neuronal layers. However, this pattern may change in pathological conditions, which drive GAT-3 expression in Müller cells. Our data suggest that in purified cultures and upon extensive neuronal lesion in vivo, shown as a Brn3a reduced neuronal cells and an GFAP increased gliosis, Müller glia may change its capacity to take up GABA due to GAT-3 up regulation and suggests a regulatory interplay mediated by glutamate between neurons and glial cells in this process.


Subject(s)
Ependymoglial Cells/physiology , GABA Plasma Membrane Transport Proteins/physiology , Glutamic Acid/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Biological Transport, Active , Biotinylation , Calcium/analysis , Cell Membrane/metabolism , Cells, Cultured , Chick Embryo , Chickens , Culture Media, Conditioned , Ependymoglial Cells/drug effects , GABA Plasma Membrane Transport Proteins/genetics , Gene Expression Profiling , Glutamic Acid/pharmacology , Kainic Acid/pharmacology , N-Methylaspartate/administration & dosage , N-Methylaspartate/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/physiology , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Retina/growth & development , Tetradecanoylphorbol Acetate/pharmacology
6.
Front Cell Neurosci ; 8: 59, 2014.
Article in English | MEDLINE | ID: mdl-24578683

ABSTRACT

Neural stem cells (NSCs) from the subventricular zone (SVZ) have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin (Hp), a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that Hp and derivates may be of potential interest for the development of future strategies to treat demyelinating diseases.

SELECTION OF CITATIONS
SEARCH DETAIL