Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell Death Dis ; 15(1): 25, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38195541

ABSTRACT

ASPP1 (PPP1R13B) belongs to a family of p53-binding proteins and enhances apoptosis by stimulation of p53-transactivation of selected proapoptotic target genes. It is preferentially expressed in hematopoietic stem cells (HSC) and together with p53 preserves the genomic integrity of the HSC pool. Consequently, dysfunction of ASPP1 has been associated with malignant transformation and development of acute lymphoblastic leukemias and lymphomas - whereas methylation of the promoter region is linked to reduced transcription and ultimately attenuated expression of ASPP1. The role of ASPP1 in AML is not known. We now show that impaired regulation of PPP1R13B contributes to the biology of leukemogenesis and primary therapy resistance in AML. PPP1R13B mRNA expression patterns thereby define a distinct prognostic profile - which is not reflected by the European leukemia net (ELN) risk score. These findings have direct therapeutic implications and we provide a strategy to restore ASPP1 protein levels using hypomethylating agents to sensitize cells towards proapoptotic drugs. Prospective clinical trials are warranted to investigate the role of ASPP1 (PPP1R13B) as a biomarker for risk stratification and as a potential therapeutic target to restore susceptibility to chemotherapy.


Subject(s)
Leukemia, Myeloid, Acute , Tumor Suppressor Protein p53 , Humans , Prospective Studies , Tumor Suppressor Protein p53/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Apoptosis/genetics , Carcinogenesis
2.
Hematology ; 28(1): 2206694, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38078486

ABSTRACT

OBJECTIVES: The aim of this study is to investigate the effect of treatment choice on survival, transfusion needs and hospitalizations in patients > 64 years old with newly diagnosed acute myeloid leukaemia (AML). MATERIAL AND METHODS: This study retrospectively analysed patients over 64 years with AML diagnosed at a regional healthcare network in Switzerland between 2017 and 2020. Patients underwent four therapy groups: intensive chemotherapy (IC), hypomethylating agent in combination with the BCL2-Inhibitor venetoclax (HMA + VEN), hypomethylating agents alone (HMA) or best supportive care (BSC). RESULTS: Of 54 patients 12 (22%) were selected for IC, 13 (24%) for HMA + VEN, 17 (32%) for HMA and 12 (22%) for BSC. The median overall survival of the patients was 76 days, with a significant difference in the four therapy groups (IC 119 days, HMA + VEN 732 days, HMA monotherapy 73 days and BSC 12 days Log-Rank Test Chi2(2): p < 0.001). Patients with HMA + VEN spent significantly less time in the hospital 6.8 days/month compared to IC (19.5 days/month), HMA (20.5 days/month) and BSC (10.5 days/month) (p = 0.005). Transfusion needs were the highest in IC (7.0 RBC/month, 8.0 PC/month) (p = 0.023), whereas there was no difference between HMA + VEN (2.5 RBC/month, 3.2 PC/month), HMA monotherapy (5.3 RBC/month, 6.2 PC/month) and BSC (3.0 RBC/month, 1.4 PC/month). CONCLUSION: Our real-world data demonstrate superior OS rates of HMA + VEN when compared to IC, HMC or BSC, with a favourable side effect profile with regard to transfusion needs or hospitalization days.Abbreviations: AML, acute myeloid leukaemia; BCL2, B-cell leukaemia/lymphoma-2; BSC, best supportive care; CR, complete response; Cri, complete response with incomplete haematologic regeneration; FLT3, Fms Related Receptor Tyrosine Kinase 3; EKOS, Ethikkomission Ostschweiz; ELN, European Leukaemia Net; HMA, hypomethylating agent; IC, intensive chemotherapy; IDH, Isocitratdehydrogenase; LDAC, low-dose Cytarabine; NCCN, National Comprehensive Cancer Network; OS, overall survival; PC, platelet concentrate; RBC, red blood cell; RCT, randomized controlled trials; t-AML, therapy relative acute myeloid leukaemia'; VEN, venetoclax.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Humans , Middle Aged , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/diagnosis , Proto-Oncogene Proteins c-bcl-2/therapeutic use
3.
Clin Case Rep ; 10(10): e6296, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36225622

ABSTRACT

The p53 mutation R273H in tumor cells leads to increased glucose uptake, lactic acidosis, and accelerated tumor growth, as was previously shown in mice. We here present a patient with mantle cell lymphoma harboring this p53_R273H mutation, whose clinical course is characterized by severe lactic acidosis, hypoglycemia, and aggressive disease.

4.
BMC Cancer ; 22(1): 725, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780096

ABSTRACT

BACKGROUND: Metastatic soft tissue sarcoma (STS) are a heterogeneous group of malignancies which are not curable with chemotherapy alone. Therefore, understanding the molecular mechanisms of sarcomagenesis and therapy resistance remains a critical clinical need. ASPP2 is a tumor suppressor, that functions through both p53-dependent and p53-independent mechanisms. We recently described a dominant-negative ASPP2 isoform (ASPP2κ), that is overexpressed in human leukemias to promote therapy resistance. However, ASPP2κ  has never been studied in STS.  MATERIALS AND METHODS: Expression of ASPP2κ was quantified in human rhabdomyosarcoma tumors using immunohistochemistry and qRT-PCR from formalin-fixed paraffin-embedded (FFPE) and snap-frozen tissue. To study the functional role of ASPP2κ in rhabdomyosarcoma, isogenic cell lines were generated by lentiviral transduction with short RNA hairpins to silence ASPP2κ expression. These engineered cell lines were used to assess the consequences of ASPP2κ silencing on cellular proliferation, migration and sensitivity to damage-induced apoptosis. Statistical analyses were performed using Student's t-test and 2-way ANOVA. RESULTS: We found elevated ASPP2κ mRNA in different soft tissue sarcoma cell lines, representing five different sarcoma sub-entities. We found that ASSP2κ mRNA expression levels were induced in these cell lines by cell-stress. Importantly, we found that the median ASPP2κ expression level was higher in human rhabdomyosarcoma in comparison to a pool of tumor-free tissue. Moreover, ASPP2κ levels were elevated in patient tumor samples versus adjacent tumor-free tissue within individual patients. Using isogenic cell line models with silenced ASPP2κ expression, we found that suppression of ASPP2κ enhanced chemotherapy-induced apoptosis and attenuated cellular proliferation. CONCLUSION: Detection of oncogenic ASPP2κ in human sarcoma provides new insights into sarcoma tumor biology. Our data supports the notion that ASPP2κ promotes sarcomagenesis and resistance to therapy. These observations provide the rationale for further evaluation of ASPP2κ as an oncogenic driver as well as a prognostic tool and potential therapeutic target in STS.


Subject(s)
Apoptosis Regulatory Proteins , Carcinogenesis , Rhabdomyosarcoma , Sarcoma , Soft Tissue Neoplasms , Alternative Splicing , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Humans , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/metabolism , Sarcoma/genetics , Sarcoma/metabolism , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Front Mol Biosci ; 8: 727203, 2021.
Article in English | MEDLINE | ID: mdl-34805267

ABSTRACT

Alternative splicing is a common physiologic mechanism to generate numerous distinct gene products from one gene locus, which can result in unique gene products with differing important functional outcomes depending on cell context. Aberrant alternative splicing is a hallmark of cancer that can contribute to oncogenesis and aggressiveness of the disease as well as resistance to therapy. However, aberrant splicing might also result in novel targets for cancer therapy. ASPP2 is a haplo-insufficient tumor suppressor, that functions through both p53-dependent as well as p53-independent mechanisms to enhance cell death after stress. Interestingly, the common human tumor TP53 mutations result in a loss of the binding sites to ASPP2, leading to impaired induction of apoptosis. Vice versa, attenuation of ASPP2 has been described to be associated with high-risk disease, therapy failure and poor clinical outcome especially in tumors harboring the TP53 wildtype (WT) isoform. We have recently identified a novel, dominant-negative splicing variant of ASPP2, named ASPP2κ, with oncogenic potential. Exon-skipping results in a reading-frame shift with a premature translation stop, omitting most of the ASPP2 C-terminus - which harbors the p53-binding domain. Consequently, the ASPP2-p53 interaction is abrogated, which in part impacts on oncogenesis, aggressiveness of disease and response to therapy. Since ASPP2κ has been shown in hematologic malignancies to promote tumorigenesis, we further wished to determine if aberrant ASPP2κ expression plays a role in human solid tumors. In this report, we find that ASPP2κ is frequently expressed in human colorectal tumors (CRC). Using ASPP2κ overexpressing and interference CRC models, we demonstrate a functional role of ASPP2κ in contributing to oncogenesis and resistance to therapy in CRC by 1) enhancing proliferation, 2) promoting cell migration and, 3) conferring resistance to chemotherapy induced apoptosis. Our findings have far-reaching consequences for future diagnostic and therapeutic strategies for ASPP2κ expressing colorectal cancer patients and provide proof-of-principle to further explore ASPP2κ as potential predictive marker and target for therapy in clinical trials.

6.
Neurol Res Pract ; 3(1): 25, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33966627

ABSTRACT

BACKGROUND: All-trans retinoic acid (ATRA) is an acid derivative of vitamin A which is discussed as a promising candidate to ameliorate the disease course of multiple sclerosis (MS) by immunomodulation or even by promoting regeneration in progressive MS. Here we report a patient who significantly improved for MS related disability following administration of chemotherapy including ATRA for mitoxantrone-related acute promyelocytic leukemia and assess the effect of high-dose ATRA in three additional patients with progressive MS. METHODS: Patients with progressive MS who had failed previous therapies were treated with high-dose ATRA. Patients underwent clinical and routine laboratory monitoring. Additionally, PBMCs were analyzed by flow cytometry for lymphocyte subsets. RESULTS: ATRA was well tolerated and no pathological laboratory abnormalities were observed. After initial mild (not statistically significant) improvement of EDSS and mean MSFC z-score, ongoing disease progression was observed. One patient subacutely experienced severe cognitive and motor worsening. Cerebral MRI revealed persistent gadolinium-enhancing lesions. Flow cytometric alterations of peripheral blood naïve, central memory and effector memory CD4 and CD8 T cells, B lymphocytes, plasma cells, memory B cells, plasmablasts and natural killer (NK) cells did not reach statistical significance. CONCLUSIONS: Stand-alone therapy with ATRA did not ameliorate progressive MS in our limited cohort and we did not observe consistent alterations of T and B cell subsets. Intriguingly, application of ATRA may have caused marked disease exacerbation in one patient.

7.
J Clin Oncol ; 38(3): 257-270, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31794324

ABSTRACT

PURPOSE: DNA-hypomethylating agents are studied in combination with other epigenetic drugs, such as histone deacetylase inhibitors or differentiation inducers (eg, retinoids), in myeloid neoplasias. A randomized, phase II trial with a 2 × 2 factorial design was conducted to investigate the effects of the histone deacetylase inhibitor valproate and all-trans retinoic acid (ATRA) in treatment-naive elderly patients with acute myeloid leukemia (AML). PATIENTS AND METHODS: Two hundred patients (median age, 76 years; range, 61-92 years) ineligible for induction chemotherapy received decitabine (20 mg/m2 intravenously, days 1 to 5) alone (n = 47) or in combination with valproate (n = 57), ATRA (n = 46), or valproate + ATRA (n = 50). The primary endpoint was objective response, defined as complete and partial remission, tested at a one-sided significance level of α = .10. Key secondary endpoints were overall survival, event-free survival, and progression-free survival and safety. RESULTS: The addition of ATRA resulted in a higher remission rate (21.9% with ATRA v 13.5% without ATRA; odds ratio, 1.80; 95% CI, 0.86 to 3.79; one-sided P = .06). For valproate, no effect was observed (17.8% with valproate v 17.2% without valproate; odds ratio, 1.06; 95% CI, 0.51 to 2.21; one-sided P = .44). Median overall survival was 8.2 months with ATRA v 5.1 months without ATRA (hazard ratio, 0.65; 95% CI, 0.48 to 0.89; two-sided P = .006). Improved survival was observed across risk groups, including patients with adverse cytogenetics, and was associated with longer response duration. With valproate, no survival difference was observed. Toxicities were predominantly hematologic, without relevant differences between the 4 arms. CONCLUSION: The addition of ATRA to decitabine resulted in a higher remission rate and a clinically meaningful survival extension in these patients with difficult-to-treat disease, without added toxicity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Aged , Aged, 80 and over , Decitabine/administration & dosage , Disease-Free Survival , Female , Humans , Male , Middle Aged , Tretinoin/administration & dosage , Valproic Acid/administration & dosage
8.
EBioMedicine ; 42: 340-351, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30952616

ABSTRACT

BACKGROUND: Apoptosis-stimulating Protein of TP53-2 (ASPP2) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ, with high prevalence in acute leukemia. METHODS: An mRNA screen to detect ASPP2 splicing variants was performed and ASPP2κ was validated using isoform-specific PCR approaches. Translation into a genuine protein isoform was evaluated after establishing epitope-specific antibodies. For functional studies cell models with forced expression of ASPP2κ or isoform-specific ASPP2κ-interference were created to evaluate proliferative, apoptotic and oncogenic characteristics of ASPP2κ. FINDINGS: Exon skipping generates a premature stop codon, leading to a truncated C-terminus, omitting the TP53-binding sites. ASPP2κ translates into a dominant-negative protein variant impairing TP53-dependent induction of apoptosis. ASPP2κ is expressed in CD34+ leukemic progenitor cells and functional studies argue for a role in early oncogenesis, resulting in perturbed proliferation and impaired induction of apoptosis, mitotic failure and chromosomal instability (CIN) - similar to TP53 mutations. Importantly, as expression of ASPP2κ is stress-inducible it defines a novel class of dynamic oncogenes not represented by genomic mutations. INTERPRETATION: Our data demonstrates that ASPP2κ plays a distinctive role as an antiapoptotic regulator of the TP53 checkpoint, rendering cells to a more aggressive phenotype as evidenced by proliferation and apoptosis rates - and ASPP2κ expression results in acquisition of genomic mutations, a first initiating step in leukemogenesis. We provide proof-of-concept to establish ASPP2κ as a clinically relevant biomarker and a target for molecule-defined therapy. FUND: Unrestricted grant support from the Wilhelm Sander Foundation for Cancer Research, the IZKF Program of the Medical Faculty Tübingen, the Brigitte Schlieben-Lange Program and the Margarete von Wrangell Program of the State Ministry Baden-Wuerttemberg for Science, Research and Arts and the Athene Program of the excellence initiative of the Eberhard-Karls University, Tübingen.


Subject(s)
Alternative Splicing , Apoptosis Regulatory Proteins/genetics , Genes, Tumor Suppressor , Leukemia, Myeloid, Acute/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Stress, Physiological/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cytogenetics , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Biosynthesis , Protein Isoforms/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Oncotarget ; 9(14): 11876-11882, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29545943

ABSTRACT

Activating KIT D816V mutations are frequently found in CBF AML, which predicts for an unfavorable outcome. Dasatinib is a potent inhibitor of wildtype and mutant-KIT isoforms - including D816V. We now provide proof of antileukemic efficacy in a patient with relapsing mutant-KIT D816V CBF AML. Importantly, this effect is mediated via overriding the differentiation blockage of the leukemia clone. In addition, we show that dasatinib is capable to induce pulmonary differentiation syndrome - and therefore needs close monitoring of patients under therapy.

10.
Oncotarget ; 8(47): 82897-82909, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137311

ABSTRACT

Activating D816 mutations of the class III receptor tyrosine kinase KIT are associated with the majority of patients with systemic mastocytosis (SM), but also core binding factor (CBF) AML, making KIT mutations attractive therapeutic targets for the treatment of these cancers. Crenolanib is a potent and selective inhibitor of wild-type as well as mutant isoforms of the class III receptor tyrosine kinases FLT3 and PDGFRα/ß. Notably, crenolanib inhibits constitutively active mutant-FLT3 isoforms resulting from amino acid substitutions of aspartic acid at codon 835, which is homologous to codon 816 in the KIT gene - suggesting sensitivity against mutant-KIT D816 isoforms as well. Here we demonstrate that crenolanib targets KIT D816 in SM and CBF AML models: crenolanib inhibits cellular proliferation and initiates apoptosis of mastocytosis cell lines expressing these mutations. Target-specificity was confirmed using an isogenic cell model. In addition, we demonstrate that KIT D816 mutations are targetable with clinically achievable doses of crenolanib. Further, a rationale to combine cladribine (2-CDA), the therapeutic standard in SM, with crenolanib is provided. In conclusion, we demonstrate that crenolanib is an inhibitor of mutant-KIT D816 isoforms at clinically achievable concentrations, and thus may be a potential treatment for SM and CBF AML as a monotherapy or in combination approaches.

11.
BMC Cancer ; 16: 25, 2016 Jan 16.
Article in English | MEDLINE | ID: mdl-26775260

ABSTRACT

BACKGROUND: It has been previously demonstrated in several cancer models, that Dronabinol (THC) may have anti-tumor activity--however, controversial data exists for acute leukemia. We have anecdotal evidence that THC may have contributed to disease control in a patient with acute undifferentiated leukemia. METHODS: To test this hypothesis, we evaluated the antileukemic efficacy of THC in several leukemia cell lines and native leukemia blasts cultured ex vivo. Expression analysis for the CB1/2 receptors was performed by Western immunoblotting and flow cytometry. CB-receptor antagonists as well as a CRISPR double nickase knockdown approach were used to evaluate for receptor specificity of the observed proapoptotic effects. RESULTS: Meaningful antiproliferative as well as proapoptotic effects were demonstrated in a subset of cases--with a preference of leukemia cells from the lymphatic lineage or acute myeloid leukemia cells expressing lymphatic markers. Induction of apoptosis was mediated via CB1 as well as CB2, and expression of CB receptors was a prerequisite for therapy response in our models. Importantly, we demonstrate that antileukemic concentrations are achievable in vivo. CONCLUSION: Our study provides rigorous data to support clinical evaluation of THC as a low-toxic therapy option in a well defined subset of acute leukemia patients.


Subject(s)
Dronabinol/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptor, Cannabinoid, CB1/biosynthesis , Receptor, Cannabinoid, CB2/biosynthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Leukemic/drug effects , Gene Knockdown Techniques , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB2/genetics
12.
Br J Haematol ; 169(5): 694-700, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818407

ABSTRACT

Acute myeloid leukaemia (AML) with FLT3 mutation has a dismal prognosis in elderly patients. Treatment with a combination of FLT3 inhibitors and standard chemotherapy has not been extensively studied. Therefore, we instigated a phase I/II clinical trial of chemotherapy with cytosine arabinoside (Ara-C)/daunorubicin induction (7+3) followed by three cycles of intermediate-dose Ara-C consolidation in 22 AML patients with activating FLT3 mutations. Sunitinib was added at predefined dose levels and as maintenance therapy for 2 years. At dose level 1, sunitinib 25 mg daily continuously from day 1 onwards resulted in two cases with dose-limiting toxicity (DLT), prolonged haemotoxicity and hand-foot syndrome. At dose level -1, sunitinib 25 mg was restricted to days 1-7 of each chemotherapy cycle. One DLT was observed in six evaluable patients. Six additional patients were treated in an extension phase. Thirteen of 22 patients (59%; 8/14 with FLT3-internal tandem duplication and 5/8 with FLT3-tyrosine kinase domain) achieved a complete remission/complete remission with incomplete blood count recovery. For the 17 patients included at the lower dose level, median overall, relapse-free and event-free survival were 1·6, 1·0 and 0·4 years, respectively. Four out of five analysed patients with relapse during maintenance therapy lost their initial FLT3 mutation, suggesting outgrowth of FLT3 wild-type subclones.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , fms-Like Tyrosine Kinase 3/genetics , Age Factors , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Humans , Indoles/administration & dosage , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Pyrroles/administration & dosage , Remission Induction , Sunitinib , Treatment Outcome
13.
PLoS One ; 8(11): e80193, 2013.
Article in English | MEDLINE | ID: mdl-24312201

ABSTRACT

Inactivation of the p53 pathway is a universal event in human cancers and promotes tumorigenesis and resistance to chemotherapy. Inactivating p53 mutations are uncommon in non-complex karyotype leukemias, thus the p53-pathway must be inactivated by other mechanisms. The Apoptosis Stimulating Protein of p53-2 (ASPP2) is a damage-inducible p53-binding protein that enhances apoptosis at least in part through a p53-mediated pathway. We have previously shown, that ASPP2 is an independent haploinsufficient tumor suppressor in vivo. Now, we reveal that ASPP2 expression is significantly attenuated in acute myeloid and lymphoid leukemia - especially in patients with an unfavorable prognostic risk profile and patients who fail induction chemotherapy. In line, knock down of ASPP2 in expressing leukemia cell lines and native leukemic blasts attenuates damage-induced apoptosis. Furthermore, cultured blasts derived from high-risk leukemias fail to induce ASPP2 expression upon anthracycline treatment. The mechanisms of ASPP2 dysregulation are unknown. We provide evidence that attenuation of ASPP2 is caused by hypermethylation of the promoter and 5'UTR regions in native leukemia blasts. Together, our results suggest that ASPP2 contributes to the biology of leukemia and expression should be further explored as a potential prognostic and/or predictive biomarker to monitor therapy responses in acute leukemia.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Adult , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Treatment Failure , Treatment Outcome , Young Adult
14.
Mol Cancer ; 12: 46, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23705826

ABSTRACT

BACKGROUND: Dysregulation of the PI3Kinase/AKT pathway is involved in the pathogenesis of many human malignancies. In acute leukemia, the AKT pathway is frequently activated, however mutations in the PI3K/AKT pathway are uncommon. In some cases, constitutive AKT activation can be linked to gain-of-function tyrosine kinase (TK) mutations upstream of the PI3K/AKT pathway. Inhibitors of the PI3K/AKT pathway are attractive candidates for cancer drug development, but so far clinical efficacy of PI3K inhibitors against various neoplasms has been moderate. Furthermore, specific MTORC1 inhibitors, acting downstream of AKT, have the disadvantage of activating AKT via feed-back mechanisms. We now evaluated the antitumor efficacy of NVP-BGT226, a novel dual pan-PI3K and MTORC1/2 inhibitor, in acute leukemia. METHODS: Native leukemia blasts were stained to analyze for AKT phosphorylation levels on a flow cytometer. Efficacy of NVP-BGT226 in comparison to a second dual inhibitor, NVP-BEZ235, was determined with regard to cellular proliferation, autophagy, cell cycle regulation and induction of apoptosis in in vitro and ex vivo cellular assays as well as on the protein level. An isogenic AKT-autoactivated Ba/F3 model, different human leukemia cell lines as well as native leukemia patient blasts were studied. Isobologram analyses were set up to calculate for (super) additive or antagonistic effects of two agents. RESULTS: We show, that phosphorylation of AKT is frequently augmented in acute leukemia. NVP-BGT226 as well as NVP-BEZ235 profoundly and globally suppress AKT signaling pathways, which translates into potent antiproliferative effects. Furthermore, NVP-BGT226 has potent proapoptotic effects in vitro as well as in ex vivo native blasts. Surprisingly and in contrast, NVP-BEZ235 leads to a profound G1/G0 arrest preventing significant induction of apoptosis. Combination with TK inhibitors, which are currently been tested in the treatment of acute leukemia subtypes, overcomes cell cycle arrest and results in (super)additive proapoptotic effects for NVP-BGT226--but also for NVP-BEZ235. Importantly, mononuclear donor cells show lower phospho-AKT expression levels and consequently, relative insensitivity towards dual PI3K-MTORC1/2 inhibition. CONCLUSIONS: Our data suggest a favorable antileukemic profile for NVP-BGT226 compared to NVP-BEZ235--which provides a strong rationale for clinical evaluation of the dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia.


Subject(s)
Cell Cycle/drug effects , Imidazoles/pharmacology , Leukemia/metabolism , Multiprotein Complexes/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Quinolines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Leukemia/genetics , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mutation , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
15.
Blood ; 122(1): 100-8, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23704090

ABSTRACT

Mutations in the nucleophosmin 1 (NPM1) gene are considered a founder event in the pathogenesis of acute myeloid leukemia (AML). To address the role of clonal evolution in relapsed NPM1-mutated (NPM1mut) AML, we applied high-resolution, genome-wide, single-nucleotide polymorphism array profiling to detect copy number alterations (CNAs) and uniparental disomies (UPDs) and performed comprehensive gene mutation screening in 53 paired bone marrow/peripheral blood samples obtained at diagnosis and relapse. At diagnosis, 15 aberrations (CNAs, n = 10; UPDs, n = 5) were identified in 13 patients (25%), whereas at relapse, 56 genomic alterations (CNAs, n = 46; UPDs, n = 10) were detected in 29 patients (55%) indicating an increase in genomic complexity. Recurrent aberrations acquired at relapse included deletions affecting tumor suppressor genes (ETV6 [n = 3], TP53 [n = 2], NF1 [n = 2], WT1 [n = 3], FHIT [n = 2]) and homozygous FLT3 mutations acquired via UPD13q (n = 7). DNMT3A mutations (DNMT3Amut) showed the highest stability (97%). Persistence of DNMT3Amut in 5 patients who lost NPM1mut at relapse suggests that DNMT3Amut may precede NPM1mut in AML pathogenesis. Of note, all relapse samples shared at least 1 genetic aberration with the matched primary AML sample, implying common ancestral clones. In conclusion, our study reveals novel insights into clonal evolution in NPM1mut AML.


Subject(s)
Clonal Evolution/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Adult , Aged , Chromosomes, Human, Pair 13 , Chromosomes, Human, Pair 9 , DNA Fingerprinting , DNA Methyltransferase 3A , Female , Gene Deletion , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/epidemiology , Male , Middle Aged , Nucleophosmin , Polymorphism, Single Nucleotide/genetics , Prognosis , Recurrence , Risk Factors , Young Adult
16.
Mol Cancer ; 12: 19, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23497317

ABSTRACT

BACKGROUND: Activating mutations of class III receptor tyrosine kinases (RTK) FLT3, PDGFR and KIT are associated with multiple human neoplasms including hematologic malignancies, for example: systemic mast cell disorders (KIT), non-CML myeloproliferative neoplasms (PDGFR) and subsets of acute leukemias (FLT3 and KIT). First generation tyrosine kinase inhibitors (TKI) are rapidly being integrated into routine cancer care. However, the expanding spectrum of TK-mutations, bioavailability issues and the emerging problem of primary or secondary TKI-therapy resistance have lead to the search for novel second generation TKIs to improve target potency and to overcome resistant clones.Quizartinib was recently demonstrated to be a selective FLT3 inhibitor with excellent pharmacokinetics and promising in vivo activity in a phase II study for FLT3 ITD + AML patients. In vitro kinase assays have suggested that in addition to FLT3, quizartinib also targets related class III RTK isoforms. METHODS: Various FLT3 or KIT leukemia cell lines and native blasts were used to determine the antiproliferative and proapoptotic efficacy of quizartinib. To better compare differences between the mutant kinase isoforms, we generated an isogenic BaF3 cell line expressing different FLT3, KIT or BCR/ABL isoforms. Using immunoblotting, we examined the effects of quizartinib on activation of mutant KIT or FLT3 isoforms. RESULTS: Kinase inhibition of (mutant) KIT, PDGFR and FLT3 isoforms by quizartinib leads to potent inhibition of cellular proliferation and induction of apoptosis in in vitro leukemia models as well as in native leukemia blasts treated ex vivo. However, the sensitivity patterns vary widely depending on the underlying (mutant)-kinase isoform, with some isoforms being relatively insensitive to this agent (e.g. FLT3 D835V and KIT codon D816 mutations). Evaluation of sensitivities in an isogenic cellular background confirms a direct association with the underlying mutant-TK isoform--which is further validated by immunoblotting experiments demonstrating kinase inhibition consistent with the cellular sensitivity/resistance to quizartinib. CONCLUSION: Quizartinib is a potent second-generation class III receptor TK-inhibitor--but specific, mutation restricted spectrum of activity may require mutation screening prior to therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Humans , Inhibitory Concentration 50 , Leukemia/genetics , Leukemia/metabolism , Mutation , Phosphorylation , Protein Isoforms , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
17.
Cell Cycle ; 8(16): 2621-30, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19625780

ABSTRACT

AML remains a difficult disease to treat. Despite response to induction chemotherapy, most patients ultimately relapse. Further, among elderly patients, aggressive therapy options are often limited due to other medical conditions and decreased tolerance of these patients to conventional chemotherapy. Internal tandem duplications (ITD) of the FLT3 juxtamembrane domain occur in 20-30% of AML patients and predict poor outcome. First clinical data with the FLT3 inhibitor tandutinib demonstrated antileukemic activity in approximately half of the patients--predominantly with FLT3 ITD positive AML. But the data also show that optimal use of tandutinib will require combination therapy with cytotoxic agents. Notably, single agent tandutinib has not been associated with myelosuppression, mucositis or cardiac toxicity--the dose limiting toxicities of AML chemotherapy. We determined the feasibility of combining tandutinib with the standard "3 + 7" induction regimen in AML and show that, in contrast to other structurally unrelated FLT3 inhibitors recently evaluated in clinical trials, the use of tandutinib displayed application sequence independent synergistic antileukemic effects in combination with cytarabine and daunorubicin. Strong synergistic antiproliferative and proapoptotic effects were thereby predominantly seen on FLT3 ITD positive blasts. Further we demonstrate, that addition of tandutinib may allow dose reduction of chemotherapy without loss of overall antileukemic activity--resulting in a potential decrease of side effects. This approach might be an interesting novel strategy especially in the treatment of elderly/comorbid patients. Our data provide a rationale for combining tandutinib with induction chemotherapy in intensified as well as in dose reduction protocols for FLT3 ITD positive AML.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Cytarabine/pharmacology , Daunorubicin/pharmacology , Piperazines/pharmacology , Quinazolines/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Cell Line , Cell Proliferation/drug effects , Drug Synergism , Flow Cytometry , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/drug therapy
18.
Mol Cancer Ther ; 8(3): 481-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19276157

ABSTRACT

Antibodies targeting epidermal growth factor receptor (EGFR) have proven to be effective in patients with non-small cell lung cancer (NSCLC) that express EGFR. We recently published a phase I study of weekly matuzumab plus paclitaxel. This therapy was well tolerated and showed clinical responses in the majority of patients. Although matuzumab displays potent antitumor activity in some patients, not all patients respond well to treatment. Whether dysregulation of EGFR-mediated pathways precludes or sensitizes cells to paclitaxel is unknown. We sought to determine molecular predictive factors for therapy response in a phase I/II study patient cohort treated with matuzumab+/-paclitaxel. Twenty-three cases [including one complete response (CR), three partial responses (PR), 10 stable diseases (SD)] were screened using immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), PCR/sequencing and denaturing wave high performance liquid chromatography (D-HPLC) for expression, amplification, and mutation status of EGFR and downstream signaling pathways. All patients with PR or CR displayed an either high overall or single-cell EGFR expression in the majority of cells. In addition, all of the moderate responders, who achieved SD after at least two cycles of therapy, showed diffuse EGFR expression rates and/or strong single-cell EGFR expression. In contrast, 44% of the nonresponders showed low overall or single-cell EGFR expression levels. No low-expressing EGFR cases were present within the responder group. In addition, among patients with a gain-of-function mutation in KRAS primary therapy failure and/or short responses to therapy were observed. Our data suggest that EGFR expression and KRAS mutation status is predictive for clinical response to matuzumab +/- paclitaxel in patients with advanced NSCLC.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Paclitaxel/administration & dosage , Adult , Aged , Antibodies, Monoclonal, Humanized , Biomarkers, Tumor/analysis , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Cohort Studies , DNA Mutational Analysis , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, erbB-1 , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , Retrospective Studies , ras Proteins/genetics
19.
Cancer Cell ; 12(6): 501-13, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18068628

ABSTRACT

Mutations in the juxtamembrane and kinase domains of FLT3 are common in AML, but it is not known whether alterations outside these regions contribute to leukemogenesis. We used a high-throughput platform to interrogate the entire FLT3 coding sequence in AML patients without known FLT3 mutations and experimentally tested the consequences of each candidate leukemogenic allele. This approach identified gain-of-function mutations that activated downstream signaling and conferred sensitivity to FLT3 inhibition and alleles that were not associated with kinase activation, including mutations in the catalytic domain. These findings support the concept that acquired mutations in cancer may not contribute to malignant transformation and underscore the importance of functional studies to distinguish "driver" mutations underlying tumorigenesis from biologically neutral "passenger" alterations.


Subject(s)
Alleles , Mutation/genetics , fms-Like Tyrosine Kinase 3/genetics , Adult , Animals , Cell Proliferation/drug effects , DNA Mutational Analysis , Enzyme Activation/drug effects , Humans , Leukemia, Monocytic, Acute/enzymology , Leukemia, Monocytic, Acute/genetics , Leukemia, Monocytic, Acute/pathology , Mice , Mutant Proteins/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Structure, Secondary , Signal Transduction/drug effects , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , fms-Like Tyrosine Kinase 3/chemistry
20.
Int J Oncol ; 29(2): 471-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16820891

ABSTRACT

Testicular germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. It has been suggested that the chemosensitivity of GCTs can be partially attributed to the preference of apoptosis induction over a p21-mediated G1/S phase cell-cycle arrest following induction of p53. Since cell-cycle progression can be manipulated by a growing number of targeted agents, a thorough understanding of the impact of cell-cycle progression on drug-induced cell death might help to enhance the efficacy of chemotherapy. The aim of this study was to assess the cell-cycle dependence of cisplatin-induced cell death in an in vitro model of GCTs. Cell-cycle progression and induction of apoptosis were assessed by flow cytometry and Western blot analysis of PARP cleavage in the GCT derived cell lines, NT2 and 2102 EP, and compared with the breast carcinoma cell line MCF-7. Response to treatment was assessed in different phases of the cell cycle after synchronization by serum depletion and contact inhibition. Following cisplatin exposure, unsynchronized cells accumulated in G2/M after 28 h. This arrest was reversible at sublethal cisplatin doses (0.5-4.5 microM for 2 h). At higher concentrations, cells accumulated in G2 and died in G2/M-arrest. A 2-h exposure of cells in G2/M with 10 microM cisplatin resulted in a higher apoptotic index 70 h after treatment (74 and 70% for NT2 and 2102 EP, respectively) compared to treatment in G1/S (34 and 38%). Synchronized cells treated in G1 showed PARP cleavage after 48 h following cisplatin exposure, whereas treatment in G2 resulted in PARP cleavage already after 24 h. Cisplatin-induced cell death in GCTs is highly dependent on cell-cycle phase. All crucial events are restricted to the G2/M phase: cisplatin-induced DNA-damage is sensed, the apoptotic process is initiated and eventually executed in this phase of the cell cycle. The cells are most sensitive to cisplatin in this phase of the cell cycle. As far as the development of targeted agents is concerned, inhibition of the cell cycle in G1/S phase is likely to result in a protective effect against cisplatin, whereas agents arresting cells in G2/M may exert a synergistic effect.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/pathology , Apoptosis , Cell Cycle , Cell Line, Tumor , DNA Damage , Drug Resistance, Neoplasm , Humans , In Vitro Techniques , Poly(ADP-ribose) Polymerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...