Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nat Immunol ; 24(6): 1020-1035, 2023 06.
Article in English | MEDLINE | ID: mdl-37127830

ABSTRACT

While regulatory T (Treg) cells are traditionally viewed as professional suppressors of antigen presenting cells and effector T cells in both autoimmunity and cancer, recent findings of distinct Treg cell functions in tissue maintenance suggest that their regulatory purview extends to a wider range of cells and is broader than previously assumed. To elucidate tumoral Treg cell 'connectivity' to diverse tumor-supporting accessory cell types, we explored immediate early changes in their single-cell transcriptomes upon punctual Treg cell depletion in experimental lung cancer and injury-induced inflammation. Before any notable T cell activation and inflammation, fibroblasts, endothelial and myeloid cells exhibited pronounced changes in their gene expression in both cancer and injury settings. Factor analysis revealed shared Treg cell-dependent gene programs, foremost, prominent upregulation of VEGF and CCR2 signaling-related genes upon Treg cell deprivation in either setting, as well as in Treg cell-poor versus Treg cell-rich human lung adenocarcinomas. Accordingly, punctual Treg cell depletion combined with short-term VEGF blockade showed markedly improved control of PD-1 blockade-resistant lung adenocarcinoma progression in mice compared to the corresponding monotherapies, highlighting a promising factor-based querying approach to elucidating new rational combination treatments of solid organ cancers.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Animals , Mice , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Tumor Microenvironment , Neoplasms/metabolism
2.
Immunity ; 55(7): 1173-1184.e7, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35700740

ABSTRACT

Regulatory T (Treg) cells expressing the transcription factor Foxp3 are an essential suppressive T cell lineage of dual origin: Foxp3 induction in thymocytes and mature CD4+ T cells gives rise to thymic (tTreg) and peripheral (pTreg) Treg cells, respectively. While tTreg cells suppress autoimmunity, pTreg cells enforce tolerance to food and commensal microbiota. However, the role of Foxp3 in pTreg cells and the mechanisms supporting their differentiation remain poorly understood. Here, we used genetic tracing to identify microbiota-induced pTreg cells and found that many of their distinguishing features were Foxp3 independent. Lineage-committed, microbiota-dependent pTreg-like cells persisted in the colon in the absence of Foxp3. While Foxp3 was critical for the suppression of a Th17 cell program, colitis, and mastocytosis, pTreg cells suppressed colonic effector T cell expansion in a Foxp3-independent manner. Thus, Foxp3 and the tolerogenic signals that precede and promote its expression independently confer distinct facets of pTreg functionality.


Subject(s)
Forkhead Transcription Factors , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , Immune Tolerance , Th17 Cells/metabolism , Thymocytes/metabolism
3.
Nat Immunol ; 22(9): 1163-1174, 2021 09.
Article in English | MEDLINE | ID: mdl-34426690

ABSTRACT

The immunosuppressive function of regulatory T (Treg) cells is dependent on continuous expression of the transcription factor Foxp3. Foxp3 loss of function or induced ablation of Treg cells results in a fatal autoimmune disease featuring all known types of inflammatory responses with every manifestation stemming from Treg cell paucity, highlighting a vital function of Treg cells in preventing fatal autoimmune inflammation. However, a major question remains whether Treg cells can persist and effectively exert their function in a disease state, where a broad spectrum of inflammatory mediators can either inactivate Treg cells or render innate and adaptive pro-inflammatory effector cells insensitive to suppression. By reinstating Foxp3 protein expression and suppressor function in cells expressing a reversible Foxp3 null allele in severely diseased mice, we found that the resulting single pool of rescued Treg cells normalized immune activation, quelled severe tissue inflammation, reversed fatal autoimmune disease and provided long-term protection against them. Thus, Treg cells are functional in settings of established broad-spectrum systemic inflammation and are capable of affording sustained reset of immune homeostasis.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/immunology , Forkhead Transcription Factors/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmunity/genetics , Cell Differentiation/immunology , Female , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , Homeostasis/immunology , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Systemic Inflammatory Response Syndrome/pathology
4.
Sci Immunol ; 6(60)2021 06 11.
Article in English | MEDLINE | ID: mdl-34117110

ABSTRACT

Effective antiviral immunity requires generation of T and B lymphocytes expressing the transcription factor T-bet, a regulator of type 1 inflammatory responses. Using T-bet expression as an endogenous marker for cells participating in a type 1 response, we report coordinated interactions of T-bet-expressing T and B lymphocytes on the basis of their dynamic colocalization at the T cell zone and B follicle boundary (T-B boundary) and germinal centers (GCs) during lung influenza infection. We demonstrate that the assembly of this circuit takes place in distinct anatomical niches within the draining lymph node, guided by CXCR3 that enables positioning of TH1 cells at the T-B boundary. The encounter of B and TH1 cells at the T-B boundary enables IFN-γ produced by the latter to induce IgG2c class switching. Within GCs, T-bet+ TFH cells represent a specialized stable sublineage required for GC growth but dispensable for IgG2c class switching. Our studies show that during respiratory viral infection, T-bet-expressing T and B lymphocytes form a circuit assembled in a spatiotemporally controlled manner that acts as a functional unit enabling a robust and coherent humoral response tailored for optimal antiviral immunity.


Subject(s)
B-Lymphocytes/immunology , Immunity, Humoral , Influenza, Human/immunology , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Animals , B-Lymphocytes/metabolism , Cell Communication/immunology , Disease Models, Animal , Female , Germinal Center/cytology , Germinal Center/metabolism , Humans , Immunoglobulin Class Switching , Influenza A virus/immunology , Influenza, Human/pathology , Influenza, Human/virology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Nippostrongylus/immunology , Rats , Receptors, CXCR3/metabolism , Strongylida Infections/immunology , Strongylida Infections/parasitology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , T-Lymphocyte Subsets/metabolism , Th1 Cells/metabolism
5.
J Exp Med ; 218(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33095261

ABSTRACT

ST2, the receptor for the alarmin IL-33, is expressed by a subset of regulatory T (T reg) cells residing in nonlymphoid tissues, and these cells can potently expand upon provision of exogenous IL-33. Whether the accumulation and residence of T reg cells in tissues requires their cell-intrinsic expression of and signaling by ST2, or whether indirect IL-33 signaling acting on other cells suffices, has been a matter of contention. Here, we report that ST2 expression on T reg cells is largely dispensable for their accumulation and residence in nonlymphoid organs, including the visceral adipose tissue (VAT), even though cell-intrinsic sensing of IL-33 promotes type 2 cytokine production by VAT-residing T reg cells. In addition, we uncovered a novel ST2-dependent role for T reg cells in limiting the size of IL-17A-producing γδT cells in the CNS in a mouse model of neuroinflammation, experimental autoimmune encephalomyelitis (EAE). Finally, ST2 deficiency limited to T reg cells led to disease exacerbation in EAE.


Subject(s)
Inflammation/immunology , Interleukin-1 Receptor-Like 1 Protein/immunology , Neurons/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-17/immunology , Interleukin-33/immunology , Male , Mice
6.
Proc Natl Acad Sci U S A ; 117(52): 33446-33454, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318189

ABSTRACT

Reduced nutrient intake is a widely conserved manifestation of sickness behavior with poorly characterized effects on adaptive immune responses. During infectious challenges, naive T cells encountering their cognate antigen become activated and differentiate into highly proliferative effector T cells. Despite their evident metabolic shift upon activation, it remains unclear how effector T cells respond to changes in nutrient availability in vivo. Here, we show that spontaneous or imposed feeding reduction during infection decreases the numbers of splenic lymphocytes. Effector T cells showed cell-intrinsic responses dependent on the nuclear receptor Farnesoid X Receptor (FXR). Deletion of FXR in T cells prevented starvation-induced loss of lymphocytes and increased effector T cell fitness in nutrient-limiting conditions, but imparted greater weight loss to the host. FXR deficiency increased the contribution of glutamine and fatty acids toward respiration and enhanced cell survival under low-glucose conditions. Provision of glucose during anorexia of infection rescued effector T cells, suggesting that this sugar is a limiting nutrient for activated lymphocytes and that alternative fuel usage may affect cell survival in starved animals. Altogether, we identified a mechanism by which the host scales immune responses according to food intake, featuring FXR as a T cell-intrinsic sensor.


Subject(s)
Feeding Behavior , Lymphocytic Choriomeningitis/immunology , Receptors, Cytoplasmic and Nuclear/metabolism , T-Lymphocytes/immunology , Animals , Anorexia/virology , Fasting , Lymphocytic Choriomeningitis/pathology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Nutrients/metabolism , Spleen/pathology , Transcription, Genetic
7.
Nature ; 581(7809): 475-479, 2020 05.
Article in English | MEDLINE | ID: mdl-32461639

ABSTRACT

Intestinal health relies on the immunosuppressive activity of CD4+ regulatory T (Treg) cells1. Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1)2-4. Products of microbial fermentation including butyrate facilitate the generation of peripherally induced Treg (pTreg) cells5-7, indicating that metabolites shape the composition of the colonic immune cell population. In addition to dietary components, bacteria modify host-derived molecules, generating a number of biologically active substances. This is epitomized by the bacterial transformation of bile acids, which creates a complex pool of steroids8 with a range of physiological functions9. Here we screened the major species of deconjugated bile acids for their ability to potentiate the differentiation of pTreg cells. We found that the secondary bile acid 3ß-hydroxydeoxycholic acid (isoDCA) increased Foxp3 induction by acting on dendritic cells (DCs) to diminish their immunostimulatory properties. Ablating one receptor, the farnesoid X receptor, in DCs enhanced the generation of Treg cells and imposed a transcriptional profile similar to that induced by isoDCA, suggesting an interaction between this bile acid and nuclear receptor. To investigate isoDCA in vivo, we took a synthetic biology approach and designed minimal microbial consortia containing engineered Bacteroides strains. IsoDCA-producing consortia increased the number of colonic RORγt-expressing Treg cells in a CNS1-dependent manner, suggesting enhanced extrathymic differentiation.


Subject(s)
Bacteria/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence , Animals , Bacteroides/metabolism , Colon/microbiology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Fermentation , Gastrointestinal Microbiome , Male , Mice , Mice, Inbred C57BL , Microbial Consortia , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
8.
J Exp Med ; 216(11): 2466-2478, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31434685

ABSTRACT

Regulatory T (T reg) cells, a specialized subset of CD4+ T cells, are essential to prevent fatal autoimmunity. Expression of the T reg lineage-defining transcription factor Foxp3, and therefore their differentiation in the thymus, is dependent upon T cell receptor (TCR) and interleukin-2 (IL-2) signaling. Here, we report that the majority of IL-2-producing cells in the thymus are mature CD4 single-positive (CD4SP) thymocytes and that continuous IL-2 production sustained thymic T reg cell generation and control of systemic immune activation. Furthermore, single-cell RNA sequencing analysis of CD4 thymocyte subsets revealed that IL-2 was expressed in self-reactive CD4SP thymocytes, which also contain T reg precursor cells. Thus, our results suggest that the thymic T reg cell pool size is scaled by a key niche factor, IL-2, produced by self-reactive CD4SP thymocytes. This IL-2-dependent scaling of thymic T reg cell generation by overall self-reactivity of a mature post-selection thymic precursor pool may likely ensure adequate control of autoimmunity.


Subject(s)
Interleukin-2/immunology , T-Lymphocytes, Regulatory/immunology , Thymocytes/immunology , Thymus Gland/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression/immunology , Immune System/immunology , Immune System/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , Mice, Knockout , Mice, Transgenic , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism
9.
Clin Cancer Res ; 25(2): 674-686, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30185420

ABSTRACT

PURPOSE: Lobular carcinoma in situ (LCIS) is a preinvasive lesion of the breast. We sought to define its genomic landscape, whether intralesion genetic heterogeneity is present in LCIS, and the clonal relatedness between LCIS and invasive breast cancers.Experimental Design: We reanalyzed whole-exome sequencing (WES) data and performed a targeted amplicon sequencing validation of mutations identified in 43 LCIS and 27 synchronous more clinically advanced lesions from 24 patients [9 ductal carcinomas in situ (DCIS), 13 invasive lobular carcinomas (ILC), and 5 invasive ductal carcinomas (IDC)]. Somatic genetic alterations, mutational signatures, clonal composition, and phylogenetic trees were defined using validated computational methods. RESULTS: WES of 43 LCIS lesions revealed a genomic profile similar to that previously reported for ILCs, with CDH1 mutations present in 81% of the lesions. Forty-two percent (18/43) of LCIS were found to be clonally related to synchronous DCIS and/or ILCs, with clonal evolutionary patterns indicative of clonal selection and/or parallel/branched progression. Intralesion genetic heterogeneity was higher among LCIS clonally related to DCIS/ILC than in those nonclonally related to DCIS/ILC. A shift from aging to APOBEC-related mutational processes was observed in the progression from LCIS to DCIS and/or ILC in a subset of cases. CONCLUSIONS: Our findings support the contention that LCIS has a repertoire of somatic genetic alterations similar to that of ILCs, and likely constitutes a nonobligate precursor of breast cancer. Intralesion genetic heterogeneity is observed in LCIS and should be considered in studies aiming to develop biomarkers of progression from LCIS to more advanced lesions.


Subject(s)
Breast Carcinoma In Situ/genetics , Breast Carcinoma In Situ/pathology , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Clonal Evolution/genetics , Genetic Heterogeneity , Genetic Variation , Disease Progression , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasm Metastasis , Neoplasm Staging , Tumor Burden , Exome Sequencing
10.
Oncogene ; 37(37): 5101-5114, 2018 09.
Article in English | MEDLINE | ID: mdl-29844572

ABSTRACT

The RANK/RANKL axis emerges as a key regulator of breast cancer initiation, progression, and metastasis. RANK-c is a RANK receptor isoform produced through alternative splicing of the TNFRSF11A (RANK) gene and a dominant-negative regulator of RANK-induced nuclear factor-κB (NF-κB) activation. Here we report that RANK-c transcript is expressed in 3.2% of cases in The Cancer Genome Atlas breast cancer cohort evenly between ER-positive and ER-negative cases. Nevertheless, the ratio of RANK to RANK-c (RANK/RANK-c) is increased in ER-negative breast cancer cell lines compared to ER-positive breast cancer cell lines. In addition, forced expression of RANK-c in ER-negative breast cancer cell lines inhibited stimuli-induced NF-κB activation and attenuated migration, invasion, colony formation, and adhesion of cancer cells. Further, RANK-c expression in MDA-MB-231 cells inhibited lung metastasis and colonization in vivo. The RANK-c-mediated inhibition of cancer cell aggressiveness and nuclear factor-κB (NF-κB) activation in breast cancer cells seems to rely on a RANK-c/TNF receptor-associated factor-2 (TRAF2) protein interaction. This was further confirmed by a mutated RANK-c that is unable to interact with TRAF2 and abolishes the ability to attenuate NF-κB activation, migration, and invasion. Additional protein interaction characterization revealed epidermal growth factor receptor (EGFR) as a novel interacting partner for RANK-c in breast cancer cells with a negative effect on EGFR phosphorylation and EGF-dependent downstream signaling pathway activation. Our findings further elucidate the complex molecular biology of the RANKL/RANK system in breast cancer and provide preliminary data for RANK-c as a possible marker for disease progression and aggressiveness.


Subject(s)
Breast Neoplasms/metabolism , ErbB Receptors/metabolism , NF-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, Estrogen/metabolism , Signal Transduction/physiology , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , RANK Ligand/metabolism
11.
J Exp Med ; 214(12): 3565-3575, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29038367

ABSTRACT

The involvement of effector T cells and regulatory T (T reg) cells in opposing and promoting solid organ carcinogenesis, respectively, is viewed as a shifting balance between a breach versus establishment of tolerance to tumor or self-antigens. We considered that tumor-associated T cells might promote malignancy via distinct mechanisms used by T cells in nonlymphoid organs to assist in their maintenance upon injury or stress. Recent studies suggest that T reg cells can participate in tissue repair in a manner separable from their immunosuppressive capacity. Using transplantable models of lung tumors in mice, we found that amphiregulin, a member of the epidermal growth factor family, was prominently up-regulated in intratumoral T reg cells. Furthermore, T cell-restricted amphiregulin deficiency resulted in markedly delayed lung tumor progression. This observed deterrence in tumor progression was not associated with detectable changes in T cell immune responsiveness or T reg and effector T cell numbers. These observations suggest a novel "nonimmune" modality for intratumoral T reg and effector T cells in promoting tumor growth through the production of factors normally involved in tissue repair and maintenance.


Subject(s)
Disease Progression , Lung Neoplasms/immunology , Lung Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Amphiregulin/deficiency , Amphiregulin/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Lung Neoplasms/blood supply , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Signal Transduction
13.
Nature ; 546(7658): 421-425, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28607488

ABSTRACT

Adaptive immune responses are tailored to different types of pathogens through differentiation of naive CD4 T cells into functionally distinct subsets of effector T cells (T helper 1 (TH1), TH2, and TH17) defined by expression of the key transcription factors T-bet, GATA3, and RORγt, respectively. Regulatory T (Treg) cells comprise a distinct anti-inflammatory lineage specified by the X-linked transcription factor Foxp3 (refs 2, 3). Paradoxically, some activated Treg cells express the aforementioned effector CD4 T cell transcription factors, which have been suggested to provide Treg cells with enhanced suppressive capacity. Whether expression of these factors in Treg cells-as in effector T cells-is indicative of heterogeneity of functionally discrete and stable differentiation states, or conversely may be readily reversible, is unknown. Here we demonstrate that expression of the TH1-associated transcription factor T-bet in mouse Treg cells, induced at steady state and following infection, gradually becomes highly stable even under non-permissive conditions. Loss of function or elimination of T-bet-expressing Treg cells-but not of T-bet expression in Treg cells-resulted in severe TH1 autoimmunity. Conversely, following depletion of T-bet- Treg cells, the remaining T-bet+ cells specifically inhibited TH1 and CD8 T cell activation consistent with their co-localization with T-bet+ effector T cells. These results suggest that T-bet+ Treg cells have an essential immunosuppressive function and indicate that Treg cell functional heterogeneity is a critical feature of immunological tolerance.


Subject(s)
Immune Tolerance/immunology , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Animals , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Separation , Female , Lymphocyte Activation , Male , Mice , T-Lymphocytes, Regulatory/cytology , Th1 Cells/cytology , Th17 Cells/cytology , Th17 Cells/immunology , Th2 Cells/cytology , Th2 Cells/immunology
14.
Nat Med ; 23(3): 376-385, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28165479

ABSTRACT

A substantial proportion of tumors consist of genotypically distinct subpopulations of cancer cells. This intratumor genetic heterogeneity poses a substantial challenge for the implementation of precision medicine. Single-cell genomics constitutes a powerful approach to resolve complex mixtures of cancer cells by tracing cell lineages and discovering cryptic genetic variations that would otherwise be obscured in tumor bulk analyses. Because of the chemical alterations that result from formalin fixation, single-cell genomic approaches have largely remained limited to fresh or rapidly frozen specimens. Here we describe the development and validation of a robust and accurate methodology to perform whole-genome copy-number profiling of single nuclei obtained from formalin-fixed paraffin-embedded clinical tumor samples. We applied the single-cell sequencing approach described here to study the progression from in situ to invasive breast cancer, which revealed that ductal carcinomas in situ show intratumor genetic heterogeneity at diagnosis and that these lesions may progress to invasive breast cancer through a variety of evolutionary processes.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , DNA Copy Number Variations/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Nucleus , Disease Progression , Female , Flow Cytometry , Formaldehyde , Humans , In Situ Hybridization, Fluorescence , MCF-7 Cells , Microscopy, Confocal , Multiplex Polymerase Chain Reaction , Paraffin Embedding , Sequence Analysis, DNA , Single-Cell Analysis , Tissue Fixation
15.
J Exp Med ; 214(3): 609-622, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28130403

ABSTRACT

The regulatory T cell (T reg cell) T cell receptor (TCR) repertoire is highly diverse and skewed toward recognition of self-antigens. TCR expression by T reg cells is continuously required for maintenance of immune tolerance and for a major part of their characteristic gene expression signature; however, it remains unknown to what degree diverse TCR-mediated interactions with cognate self-antigens are required for these processes. In this study, by experimentally switching the T reg cell TCR repertoire to a single T reg cell TCR, we demonstrate that T reg cell function and gene expression can be partially uncoupled from TCR diversity. An induced switch of the T reg cell TCR repertoire to a random repertoire also preserved, albeit to a limited degree, the ability to suppress lymphadenopathy and T helper cell type 2 activation. At the same time, these perturbations of the T reg cell TCR repertoire led to marked immune cell activation, tissue inflammation, and an ultimately severe autoimmunity, indicating the importance of diversity and specificity for optimal T reg cell function.


Subject(s)
Autoimmunity , T-Cell Antigen Receptor Specificity , T-Lymphocytes, Regulatory/immunology , Animals , Forkhead Transcription Factors/analysis , Lymph Nodes/immunology , Lymphocyte Activation , Mice , Receptors, Antigen, T-Cell/physiology
16.
Breast Cancer Res ; 18(1): 66, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27334989

ABSTRACT

BACKGROUND: Recent evidence suggests that lobular carcinoma in situ (LCIS) can be a clonal precursor of invasive breast cancers of both the ductal and lobular phenotypes. We sought to confirm these findings with an extensive study of fresh frozen breast specimens from women undergoing mastectomy. METHODS: Patients with a history of LCIS presenting for therapeutic mastectomy were identified prospectively. Frozen tissue blocks were collected, screened for lesions of interest, and subjected to microdissection and DNA extraction. Copy number profiling, whole-exome sequencing, or both were performed. Clonal relatedness was assessed using specialized statistical techniques developed for this purpose. RESULTS: After exclusions for genotyping failure, a total of 84 lesions from 30 patients were evaluated successfully. Strong evidence of clonal relatedness was observed between an LCIS lesion and the invasive cancer for the preponderance of cases with lobular carcinoma. Anatomically distinct in situ lesions of both ductal and lobular histology were also shown to be frequently clonally related. CONCLUSIONS: These data derived from women with LCIS with or without invasive cancer confirm that LCIS is commonly the clonal precursor of invasive lobular carcinoma and that distinct foci of LCIS frequently share a clonal origin, as do foci of LCIS and ductal carcinoma in situ.


Subject(s)
Breast Carcinoma In Situ/genetics , Breast Neoplasms/genetics , Carcinoma, Lobular/genetics , Clonal Evolution/genetics , Breast Carcinoma In Situ/pathology , Breast Carcinoma In Situ/surgery , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carcinoma, Lobular/pathology , Carcinoma, Lobular/surgery , Comparative Genomic Hybridization , DNA Copy Number Variations , Exome , Female , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Mastectomy , Mutation
17.
Mol Oncol ; 10(2): 360-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26643573

ABSTRACT

PURPOSE: Lobular carcinoma in situ (LCIS) has been proposed as a non-obligate precursor of invasive lobular carcinoma (ILC). Here we sought to define the repertoire of somatic genetic alterations in pure LCIS and in synchronous LCIS and ILC using targeted massively parallel sequencing. METHODS: DNA samples extracted from microdissected LCIS, ILC and matched normal breast tissue or peripheral blood from 30 patients were subjected to massively parallel sequencing targeting all exons of 273 genes, including the genes most frequently mutated in breast cancer and DNA repair-related genes. Single nucleotide variants and insertions and deletions were identified using state-of-the-art bioinformatics approaches. RESULTS: The constellation of somatic mutations found in LCIS (n = 34) and ILC (n = 21) were similar, with the most frequently mutated genes being CDH1 (56% and 66%, respectively), PIK3CA (41% and 52%, respectively) and CBFB (12% and 19%, respectively). Among 19 LCIS and ILC synchronous pairs, 14 (74%) had at least one identical mutation in common, including identical PIK3CA and CDH1 mutations. Paired analysis of independent foci of LCIS from 3 breasts revealed at least one common mutation in each of the 3 pairs (CDH1, PIK3CA, CBFB and PKHD1L1). CONCLUSION: LCIS and ILC have a similar repertoire of somatic mutations, with PIK3CA and CDH1 being the most frequently mutated genes. The presence of identical mutations between LCIS-LCIS and LCIS-ILC pairs demonstrates that LCIS is a clonal neoplastic lesion, and provides additional evidence that at least some LCIS are non-obligate precursors of ILC.


Subject(s)
Breast Neoplasms/genetics , Cadherins/genetics , Carcinoma in Situ/genetics , Carcinoma, Lobular/genetics , High-Throughput Nucleotide Sequencing , Phosphatidylinositol 3-Kinases/genetics , Antigens, CD , Breast Neoplasms/pathology , Carcinoma in Situ/pathology , Carcinoma, Lobular/pathology , Class I Phosphatidylinositol 3-Kinases , Cohort Studies , Core Binding Factor beta Subunit/genetics , Exons/genetics , Female , Humans , Mutation , Neoplasm Invasiveness , Receptors, Cell Surface/genetics
19.
Mol Oncol ; 9(4): 772-82, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25601220

ABSTRACT

PURPOSE: Lobular carcinoma in situ (LCIS) is both a risk indicator and non-obligate precursor of invasive lobular carcinoma (ILC). We sought to characterize the transcriptomic features of LCIS and ILC, with a focus on the identification of intrinsic molecular subtypes of LCIS and the changes involved in the progression from normal breast epithelium to LCIS and ILC. METHODS: Fresh-frozen classic LCIS, classic ILC, and normal breast epithelium (N) from women undergoing prophylactic or therapeutic mastectomy were prospectively collected, laser-capture microdissected, and subjected to gene expression profiling using Affymetrix HG-U133A 2.0 microarrays. RESULTS: Unsupervised hierarchical clustering of 40 LCIS samples identified 2 clusters of LCIS distinguished by 6431 probe sets (p < 0.001). Genes identifying the clusters included proliferation genes and other genes related to cancer canonical pathways such as TGF beta signaling, p53 signaling, actin cytoskeleton, apoptosis and Wnt-Signaling pathway. A supervised analysis to identify differentially expressed genes (p < 0.001) between normal epithelium, LCIS, and ILC, using 23 patient-matched triplets of N, LCIS, and ILC, identified 169 candidate precursor genes, which likely play a role in LCIS progression, including PIK3R1, GOLM1, and GPR137B. These potential precursor genes map significantly more frequently to 1q and 16q, regions frequently targeted by gene copy number alterations in LCIS and ILC. CONCLUSION: Here we demonstrate that classic LCIS is a heterogeneous disease at the transcriptomic level and identify potential precursor genes in lobular carcinogenesis. Understanding the molecular heterogeneity of LCIS and the potential role of these potential precursor genes may help personalize the therapy of patients with LCIS.


Subject(s)
Breast Neoplasms/genetics , Carcinoma in Situ/genetics , Carcinoma, Lobular/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Neoplasm Invasiveness/genetics , Breast Neoplasms/pathology , Carcinoma in Situ/pathology , Carcinoma, Lobular/pathology , Chromosomes, Human/genetics , Cluster Analysis , DNA Copy Number Variations/genetics , Disease Progression , Down-Regulation/genetics , Epithelium/pathology , Female , Genes, Neoplasm , Genetic Heterogeneity , Humans , Software
20.
Mod Pathol ; 28(3): 340-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25412848

ABSTRACT

Metaplastic breast carcinoma is a rare and aggressive histologic type of breast cancer, preferentially displaying a triple-negative phenotype. We sought to define the transcriptomic heterogeneity of metaplastic breast cancers on the basis of current gene expression microarray-based classifiers, and to determine whether these tumors display gene copy number profiles consistent with those of BRCA1-associated breast cancers. Twenty-eight consecutive triple-negative metaplastic breast carcinomas were reviewed, and the metaplastic component present in each frozen specimen was defined (ie, spindle cell, squamous, chondroid metaplasia). RNA and DNA extracted from frozen sections with tumor cell content >60% were subjected to gene expression (Illumina HumanHT-12 v4) and copy number profiling (Affymetrix SNP 6.0), respectively. Using the best practice PAM50/claudin-low microarray-based classifier, all metaplastic breast carcinomas with spindle cell metaplasia were of claudin-low subtype, whereas those with squamous or chondroid metaplasia were preferentially of basal-like subtype. Triple-negative breast cancer subtyping using a dedicated website (http://cbc.mc.vanderbilt.edu/tnbc/) revealed that all metaplastic breast carcinomas with chondroid metaplasia were of mesenchymal-like subtype, spindle cell carcinomas preferentially of unstable or mesenchymal stem-like subtype, and those with squamous metaplasia were of multiple subtypes. None of the cases was classified as immunomodulatory or luminal androgen receptor subtype. Integrative clustering, combining gene expression and gene copy number data, revealed that metaplastic breast carcinomas with spindle cell and chondroid metaplasia were preferentially classified as of integrative clusters 4 and 9, respectively, whereas those with squamous metaplasia were classified into six different clusters. Eight of the 26 metaplastic breast cancers subjected to SNP6 analysis were classified as BRCA1-like. The diversity of histologic features of metaplastic breast carcinomas is reflected at the transcriptomic level, and an association between molecular subtypes and histology was observed. BRCA1-like genomic profiles were found only in a subset (31%) of metaplastic breast cancers, and were not associated with a specific molecular or histologic subtype.


Subject(s)
Carcinoma/genetics , Carcinoma/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/analysis , Female , Gene Expression Profiling/methods , Humans , Immunohistochemistry , Metaplasia/genetics , Metaplasia/pathology , Middle Aged , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...