Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 417, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195746

ABSTRACT

The presynaptic serotonin transporter (SERT) clears extracellular serotonin following vesicular release to ensure temporal and spatial regulation of serotonergic signalling and neurotransmitter homeostasis. Prescription drugs used to treat neurobehavioral disorders, including depression, anxiety, and obsessive-compulsive disorder, trap SERT by blocking the transport cycle. In contrast, illicit drugs of abuse like amphetamines reverse SERT directionality, causing serotonin efflux. Both processes result in increased extracellular serotonin levels. By combining molecular dynamics simulations with biochemical experiments and using a homologous series of serotonin analogues, we uncovered the coupling mechanism between the substrate and the transporter, which triggers the uptake of serotonin. Free energy analysis showed that only scaffold-bound substrates could initiate SERT occlusion through attractive long-range electrostatic interactions acting on the bundle domain. The associated spatial requirements define substrate and inhibitor properties, enabling additional possibilities for rational drug design approaches.


Subject(s)
Serotonin Plasma Membrane Transport Proteins , Serotonin , Humans , Ligands , Anxiety , Anxiety Disorders
2.
J Phys Chem Lett ; 14(40): 8956-8961, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37772734

ABSTRACT

Understanding the thermal isomerization mechanism of azobenzene derivatives is essential to designing photoswitches with tunable half-lives. Herein, we employ quantum chemical calculations, nonadiabatic transition state theory, and photosensitized experiments to unravel the thermal Z/E isomerization of a heteroaromatic azoswitch, the phenylazo-1,3,5-trimethylpyrazole. In contrast to the parent azobenzene, we predict two pathways to be operative at room temperature. One is a conventional ground-state reaction occurring via inversion of the aryl group, and the other is a nonadiabatic process involving intersystem crossing to the lowest-lying triplet state and back to the ground state, accompanied by a torsional motion around the azo bond. Our results illustrate that the fastest reaction rate is not controlled by the mechanism involving the lowest activation energy, but the size of the spin-orbit couplings at the crossing between the singlet and the triplet potential energy surfaces is also determinant. It is therefore mandatory to consider all of the multiple reaction pathways in azoswitches in order to predict experimental half-lives.

SELECTION OF CITATIONS
SEARCH DETAIL
...