Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 2132, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459011

ABSTRACT

Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.


Subject(s)
DNA Replication , Neoplasms , Animals , Humans , Mice , DNA , Genomic Instability , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Immunity, Innate , MRE11 Homologue Protein/metabolism , Neoplasms/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
3.
Nat Rev Clin Oncol ; 21(4): 278-293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378898

ABSTRACT

Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.


Subject(s)
Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , DNA Repair , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , DNA Damage
4.
Nat Commun ; 14(1): 4445, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488098

ABSTRACT

RAD51C is an enigmatic predisposition gene for breast, ovarian, and prostate cancer. Currently, missing structural and related functional understanding limits patient mutation interpretation to homology-directed repair (HDR) function analysis. Here we report the RAD51C-XRCC3 (CX3) X-ray co-crystal structure with bound ATP analog and define separable RAD51C replication stability roles informed by its three-dimensional structure, assembly, and unappreciated polymerization motif. Mapping of cancer patient mutations as a functional guide confirms ATP-binding matching RAD51 recombinase, yet highlights distinct CX3 interfaces. Analyses of CRISPR/Cas9-edited human cells with RAD51C mutations combined with single-molecule, single-cell and biophysics measurements uncover discrete CX3 regions for DNA replication fork protection, restart and reversal, accomplished by separable functions in DNA binding and implied 5' RAD51 filament capping. Collective findings establish CX3 as a cancer-relevant replication stress response complex, show how HDR-proficient variants could contribute to tumor development, and identify regions to aid functional testing and classification of cancer mutations.


Subject(s)
Prostatic Neoplasms , Male , Humans , Rad51 Recombinase , Mutation , DNA Replication , Adenosine Triphosphate , DNA-Binding Proteins
5.
Bio Protoc ; 13(10): e4680, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37251092

ABSTRACT

Mitochondria play decisive roles in bioenergetics and intracellular communication. These organelles contain a circular mitochondrial DNA (mtDNA) genome that is duplicated within one to two hours by a mitochondrial replisome, independently from the nuclear replisome. mtDNA stability is regulated in part at the level of mtDNA replication. Consequently, mutations in mitochondrial replisome components result in mtDNA instability and are associated with diverse disease phenotypes, including premature aging, aberrant cellular energetics, and developmental defects. The mechanisms ensuring mtDNA replication stability are not completely understood. Thus, there remains a need to develop tools to specifically and quantifiably examine mtDNA replication. To date, methods for labeling mtDNA have relied on prolonged exposures of 5'-bromo-2'-deoxyuridine (BrdU) or 5'-ethynyl-2'-deoxyuridine (EdU). However, labeling with these nucleoside analogs for a sufficiently short time in order to monitor nascent mtDNA replication, such as under two hours, does not produce signals suited for efficient or accurate quantitative analysis. The assay system described here, termed Mitochondrial Replication Assay (MIRA), utilizes proximity ligation assay (PLA) combined with EdU-coupled Click-IT chemistry to address this limitation, thereby enabling sensitive and quantitative analysis of nascent in situ mtDNA replication with single-cell resolution. This method can be further paired with conventional immunofluorescence (IF) for multi-parameter cell analysis. By enabling monitoring nascent mtDNA prior to the complete replication of the entire mtDNA genome, this new assay system allowed the discovery of a new mitochondrial stability pathway, mtDNA fork protection. Moreover, a modification in primary antibodies application allows the adaptation of our previously described in situ protein Interactions with nascent DNA Replication Forks (SIRF) for the detection of proteins of interest to nascent mtDNA replication forks on a single molecule level (mitoSIRF). Graphical overview Schematic overview of Mitochondrial Replication Assay (MIRA). 5'-ethynyl-2'-deoxyuridine (EdU; green) incorporated in DNA is tagged with biotin (blue) using Click-IT chemistry. Subsequent proximity ligation assay (PLA, pink circles) using antibodies against biotin allows the fluorescent tagging of the nascent EdU and amplification of the signal sufficient for visualization by standard immunofluorescence. PLA signals outside the nucleus denote mitochondrial DNA (mtDNA) signals. Ab, antibody. In in situ protein interactions with nascent DNA replication forks (mitoSIRF), one of the primary antibodies is directed against a protein of interest, while the other detects nascent biotinylated EdU, thus enabling in situ protein interactions with nascent mtDNA.

6.
Nat Commun ; 14(1): 1333, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906610

ABSTRACT

The prototypic cancer-predisposition disease Fanconi Anemia (FA) is identified by biallelic mutations in any one of twenty-three FANC genes. Puzzlingly, inactivation of one Fanc gene alone in mice fails to faithfully model the pleiotropic human disease without additional external stress. Here we find that FA patients frequently display FANC co-mutations. Combining exemplary homozygous hypomorphic Brca2/Fancd1 and Rad51c/Fanco mutations in mice phenocopies human FA with bone marrow failure, rapid death by cancer, cellular cancer-drug hypersensitivity and severe replication instability. These grave phenotypes contrast the unremarkable phenotypes seen in mice with single gene-function inactivation, revealing an unexpected synergism between Fanc mutations. Beyond FA, breast cancer-genome analysis confirms that polygenic FANC tumor-mutations correlate with lower survival, expanding our understanding of FANC genes beyond an epistatic FA-pathway. Collectively, the data establish a polygenic replication stress concept as a testable principle, whereby co-occurrence of a distinct second gene mutation amplifies and drives endogenous replication stress, genome instability and disease.


Subject(s)
Breast Neoplasms , Fanconi Anemia , Animals , Female , Humans , Mice , BRCA2 Protein/genetics , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia/genetics , Genotype , Mutation , Phenotype
7.
Sci Adv ; 7(51): eabf9441, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34910513

ABSTRACT

Mitochondrial DNA (mtDNA) instability activates cGAS-dependent innate immune signaling by unknown mechanisms. Here, we find that Fanconi anemia suppressor genes are acting in the mitochondria to protect mtDNA replication forks from instability. Specifically, Fanconi anemia patient cells show a loss of nascent mtDNA through MRE11 nuclease degradation. In contrast to DNA replication fork stability, which requires pathway activation by FANCD2-FANCI monoubiquitination and upstream FANC core complex genes, mitochondrial replication fork protection does not, revealing a mechanistic and genetic separation between mitochondrial and nuclear genome stability pathways. The degraded mtDNA causes hyperactivation of cGAS-dependent immune signaling resembling the unphosphorylated ISG3 response. Chemical inhibition of MRE11 suppresses this innate immune signaling, identifying MRE11 as a nuclease responsible for activating the mtDNA-dependent cGAS/STING response. Collective results establish a previously unknown molecular pathway for mtDNA replication stability and reveal a molecular handle to control mtDNA-dependent cGAS activation by inhibiting MRE11 nuclease.

8.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34197737

ABSTRACT

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Replication/genetics , DNA/genetics , Exonucleases/genetics , Genomic Instability/genetics , RecQ Helicases/genetics , Cell Line , Cell Line, Tumor , DNA Damage/genetics , DNA Helicases/genetics , DNA Mutational Analysis/methods , DNA Repair/genetics , DNA-Binding Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Mutation/genetics , Oncogenes/genetics , Phosphorylation/genetics , Up-Regulation/genetics
9.
Nat Cancer ; 2(12): 1338-1356, 2021 12.
Article in English | MEDLINE | ID: mdl-35121902

ABSTRACT

Despite efforts in understanding its underlying mechanisms, the etiology of chromosomal instability (CIN) remains unclear for many tumor types. Here, we identify CIN initiation as a previously undescribed function for APOBEC3A (A3A), a cytidine deaminase upregulated across cancer types. Using genetic mouse models of pancreatic ductal adenocarcinoma (PDA) and genomics analyses in human tumor cells we show that A3A-induced CIN leads to aggressive tumors characterized by enhanced early dissemination and metastasis in a STING-dependent manner and independently of the canonical deaminase functions of A3A. We show that A3A upregulation recapitulates numerous copy number alterations commonly observed in patients with PDA, including co-deletions in DNA repair pathway genes, which in turn render these tumors susceptible to poly (ADP-ribose) polymerase inhibition. Overall, our results demonstrate that A3A plays an unexpected role in PDA as a specific driver of CIN, with significant effects on disease progression and treatment.


Subject(s)
Cytidine Deaminase , Pancreatic Neoplasms , Animals , Chromosomal Instability/genetics , Cytidine Deaminase/genetics , Humans , Mice , Pancreatic Neoplasms/genetics , Proteins/genetics , Pancreatic Neoplasms
10.
Cancer Cell ; 37(5): 720-734.e13, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32359397

ABSTRACT

Renal medullary carcinoma (RMC) is a highly lethal malignancy that mainly afflicts young individuals of African descent and is resistant to all targeted agents used to treat other renal cell carcinomas. Comprehensive genomic and transcriptomic profiling of untreated primary RMC tissues was performed to elucidate the molecular landscape of these tumors. We found that RMC was characterized by high replication stress and an abundance of focal copy-number alterations associated with activation of the stimulator of the cyclic GMP-AMP synthase interferon genes (cGAS-STING) innate immune pathway. Replication stress conferred a therapeutic vulnerability to drugs targeting DNA-damage repair pathways. Elucidation of these previously unknown RMC hallmarks paves the way to new clinical trials for this rare but highly lethal malignancy.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Medullary/pathology , Carcinoma, Renal Cell/pathology , Chromosome Aberrations , DNA Replication , Kidney Neoplasms/pathology , SMARCB1 Protein/metabolism , Adult , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Medullary/genetics , Carcinoma, Medullary/immunology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Cell Proliferation , Cohort Studies , DNA Copy Number Variations , Female , Gene Expression Regulation, Neoplastic , Genomics , High-Throughput Nucleotide Sequencing , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/immunology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Nude , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Prognosis , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SMARCB1 Protein/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Methods Mol Biol ; 1983: 29-45, 2019.
Article in English | MEDLINE | ID: mdl-31087291

ABSTRACT

Histone acetylation plays important roles in the regulation of DNA transcription, repair, and replication. Here we detail a method for quantitative detection of specific histone modifications in the nascent chromatin at or behind replication forks in vivo in cultured cells. The method involves labeling DNA with EdU, using Click chemistry to biotinylate EdU moieties in DNA, and then using in situ proximity ligation assay (PLA) to selectively visualize co-localization of EdU with a modified histone of choice recognized by a modification-specific antibody. We focus on detection of acetylated histones H3 and H4 in the nascent chromatin of cultured human cells as a specific example of the method's application. Notably, the method is fully applicable to studies of histones or nonhistone proteins expected to be present on nascent DNA or at replication forks, and has been successfully used in model organisms and human tissue culture.


Subject(s)
Biological Assay/methods , Click Chemistry , DNA Replication , Histones/metabolism , Acetylation , Histones/chemistry , Humans
12.
Mol Cancer Ther ; 18(5): 969-979, 2019 05.
Article in English | MEDLINE | ID: mdl-30926640

ABSTRACT

EP-100 is a synthetic lytic peptide that specifically targets the gonadotropin-releasing hormone receptor on cancer cells. To extend the utility of EP-100, we aimed to identify effective combination therapies with EP-100 for ovarian cancer and explore potential mechanisms of this combination. A series of in vitro (MTT assay, immunoblot analysis, reverse-phase protein array, comet assay, and immunofluorescence staining) and in vivo experiments were carried out to determine the biological effects of EP-100 alone and in combination with standard-of-care drugs. EP-100 decreased the viability of ovarian cancer cells and reduced tumor growth in orthotopic mouse models. Of five standard drugs tested (cisplatin, paclitaxel, doxorubicin, topotecan, and olaparib), we found that the combination of EP-100 and olaparib was synergistic in ovarian cancer cell lines. Further experiments revealed that combined treatment of EP-100 and olaparib significantly increased the number of nuclear foci of phosphorylated histone H2AX. In addition, the extent of DNA damage was significantly increased after treatment with EP-100 and olaparib in comet assay. We performed reverse-phase protein array analyses and identified that the PI3K/AKT pathway was inhibited by EP-100, which we validated with in vitro experiments. In vivo experiment using the HeyA8 mouse model demonstrated that mice treated with EP-100 and olaparib had lower tumor weights (0.06 ± 0.13 g) than those treated with a vehicle (1.19 ± 1.09 g), EP-100 alone (0.62 ± 0.78 g), or olaparib alone (0.50 ± 0.63 g). Our findings indicate that combining EP-100 with olaparib is a promising therapeutic strategy for ovarian cancer.


Subject(s)
Ovarian Neoplasms/drug therapy , Peptides/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Receptors, LHRH/genetics , Animals , BRCA1 Protein/genetics , Cell Proliferation/drug effects , Cisplatin/pharmacology , DNA Damage/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Paclitaxel/pharmacology , Peptides/chemical synthesis , Phthalazines/pharmacology , Piperazines/pharmacology , Receptors, LHRH/antagonists & inhibitors , Xenograft Model Antitumor Assays
13.
J Cell Biol ; 218(3): 732-734, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30782782

ABSTRACT

The ataxia-telangiectasia mutated (ATM) gene regulates DNA damage repair, oxidative stress, and mitochondrial processes. In this issue, Chow et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201806197) connects ATM's oxidative stress response functions to the sensing of metabolic ATP energetics distinctively important in high energy-demanding Purkinje brain cells, which could explain the most distinct A-T patient feature, cerebellar ataxia.


Subject(s)
Mitochondria , Oxygen , Adenosine Triphosphate , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Humans , Signal Transduction
14.
Bio Protoc ; 9(18): e3377, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-33654873

ABSTRACT

The duplication of DNA is a fundamental process that is required for the transfer of the genetic information from parent to daughter cells. Aberrant DNA replication processes are associated with diverse disease phenotypes, including developmental defects, ageing disorders, blood disorders such as Fanconi Anemia, increased inflammation and cancer. Therefore, the development of tools to study proteins associated with error-free DNA replication processes is of paramount importance. So far, methods to study proteins associated with nascent replication forks relied on conventional immunofluorescence and immunoprecipitation assays of 5'-ethylene-2'-deoxyuridine (EdU) labeled DNA (iPOND). While greatly informative and important, these methods lack specificities for nascent fork interactions (e.g., IF) or assay an average change of millions of cells without single-cell resolution (e.g., iPOND). The assay system described here combines proximity ligation assay (PLA) with EdU coupled click-iT chemistry, which we termed "in situ protein interaction with nascent DNA replication forks (SIRF)". This method enables sensitive and quantitative analysis of protein interactions with nascent DNA replication forks with single-cell resolution, and can further be paired with conventional immunofluorescence marker analysis for added multi-parameter analysis.

15.
Nature ; 563(7732): 478-480, 2018 11.
Article in English | MEDLINE | ID: mdl-30459368
17.
J Cell Biol ; 217(4): 1521-1536, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29475976

ABSTRACT

DNA replication reactions are central to diverse cellular processes including development, cancer etiology, drug treatment, and resistance. Many proteins and pathways exist to ensure DNA replication fidelity and protection of stalled or damaged replication forks. Consistently, mutations in proteins involved in DNA replication are implicated in diverse diseases that include defects during embryonic development and immunity, accelerated aging, increased inflammation, blood disease, and cancer. Thus, tools for efficient quantitative analysis of protein interactions at active and stalled replication forks are key for advanced and accurate biological understanding. Here we describe a sensitive single-cell-level assay system for the quantitative analysis of protein interactions with nascent DNA. Specifically, we achieve robust in situ analysis of protein interactions at DNA replication forks (SIRF) using proximity ligation coupled with 5'-ethylene-2'-deoxyuridine click chemistry suitable for multiparameter analysis in heterogeneous cell populations. We provide validation data for sensitivity, accuracy, proximity, and quantitation. Using SIRF, we obtained new insight on the regulation of pathway choice by 53BP1 at transiently stalled replication forks.


Subject(s)
Breast Neoplasms/metabolism , DNA Breaks, Double-Stranded , DNA Replication , DNA, Neoplasm/biosynthesis , Fibroblasts/metabolism , Microscopy, Fluorescence , Single-Cell Analysis/methods , Tumor Suppressor p53-Binding Protein 1/metabolism , Animals , Binding Sites , Breast Neoplasms/genetics , DNA, Neoplasm/genetics , Female , Humans , Kinetics , MCF-7 Cells , Male , Mice, Inbred C57BL , Protein Binding , Tumor Suppressor p53-Binding Protein 1/genetics
18.
Elife ; 72018 01 15.
Article in English | MEDLINE | ID: mdl-29334356

ABSTRACT

Classically, p53 tumor suppressor acts in transcription, apoptosis, and cell cycle arrest. Yet, replication-mediated genomic instability is integral to oncogenesis, and p53 mutations promote tumor progression and drug-resistance. By delineating human and murine separation-of-function p53 alleles, we find that p53 null and gain-of-function (GOF) mutations exhibit defects in restart of stalled or damaged DNA replication forks that drive genomic instability, which isgenetically separable from transcription activation. By assaying protein-DNA fork interactions in single cells, we unveil a p53-MLL3-enabled recruitment of MRE11 DNA replication restart nuclease. Importantly, p53 defects or depletion unexpectedly allow mutagenic RAD52 and POLθ pathways to hijack stalled forks, which we find reflected in p53 defective breast-cancer patient COSMIC mutational signatures. These data uncover p53 as a keystone regulator of replication homeostasis within a DNA restart network. Mechanistically, this has important implications for development of resistance in cancer therapy. Combined, these results define an unexpected role for p53-mediated suppression of replication genome instability.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Drug Resistance, Neoplasm , Genomic Instability , Homeostasis , Humans , Mice , Mutation , Tumor Suppressor Protein p53/genetics , DNA Polymerase theta
19.
Cancer Res ; 78(3): 781-797, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29229598

ABSTRACT

Checkpoint kinase inhibitors (CHKi) exhibit striking single-agent activity in certain tumors, but the mechanisms accounting for hypersensitivity are poorly understood. We screened a panel of 49 established human head and neck squamous cell carcinoma (HNSCC) cell lines and report that nearly 20% are hypersensitive to CHKi monotherapy. Hypersensitive cells underwent early S-phase arrest at drug doses sufficient to inhibit greater than 90% of CHK1 activity. Reduced rate of DNA replication fork progression and chromosomal shattering were also observed, suggesting replication stress as a root causative factor in CHKi hypersensitivity. To explore genomic underpinnings of CHKi hypersensitivity, comparative genomic analysis was performed between hypersensitive cells and cells categorized as least sensitive because they showed drug IC50 value greater than the cell panel median and lacked early S-phase arrest. Novel association between CDKN2A/p16 copy number loss, CDK2 activation, replication stress, and hypersensitivity of HNSCC cells to CHKi monotherapy was found. Restoring p16 in cell lines harboring CDKN2A/p16 genomic deletions alleviated CDK2 activation and replication stress, attenuating CHKi hypersensitivity. Taken together, our results suggest a biomarker-driven strategy for selecting HNSCC patients who may benefit the most from CHKi therapy.Significance: These results suggest a biomarker-driven strategy for selecting HNSCC patients who may benefit the most from therapy with CHK inhibitors. Cancer Res; 78(3); 781-97. ©2017 AACR.


Subject(s)
Carcinoma, Squamous Cell/pathology , Checkpoint Kinase 1/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p18/genetics , Enzyme Inhibitors/pharmacology , Head and Neck Neoplasms/pathology , S Phase , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase Inhibitor p16 , DNA Replication , Enzyme Activation , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Humans , Sequence Deletion , Tumor Cells, Cultured
20.
Nat Cell Biol ; 19(11): 1309-1310, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29087384

ABSTRACT

PARP inhibitors (PARPi) kill BRCA1/2-mutated cancers, which become resistant when DNA repair functions are restored. Now, MUS81 nuclease inhibition due to EZH2 downregulation is found to restore DNA replication fork protection but not repair, leading to PARPi-resistance in mutant BRCA2 cells and patients. This challenges the DNA repair dominance in synthetic lethality.


Subject(s)
DNA Replication/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA Damage/drug effects , DNA Damage/genetics , DNA Repair/drug effects , DNA Repair/genetics , DNA Replication/genetics , Down-Regulation/drug effects , Down-Regulation/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL