Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 13(1): 19660, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37952029

ABSTRACT

Functional and structural alterations of peritubular capillaries (PTCs) are a major determinant of chronic kidney disease (CKD). Using a software-based algorithm for semiautomatic segmentation and morphometric quantification, this study analyzes alterations of PTC shape associated with chronic tubulointerstitial injury in three mouse models and in human biopsies. In normal kidney tissue PTC shape was predominantly elongated, whereas the majority of PTCs associated with chronic tubulointerstitial injury had a rounder shape. This was reflected by significantly reduced PTC luminal area, perimeter and diameters as well as by significantly increased circularity and roundness. These morphological alterations were consistent in all mouse models and human kidney biopsies. The mean circularity of PTCs correlated significantly with categorized glomerular filtration rates and the degree of interstitial fibrosis and tubular atrophy (IFTA) and classified the presence of CKD or IFTA. 3D reconstruction of renal capillaries revealed not only a significant reduction, but more importantly a substantial simplification and reconfiguration of the renal microvasculature in mice with chronic tubulointerstitial injury. Computational modelling predicted that round PTCs can deliver oxygen more homogeneously to the surrounding tissue. Our findings indicate that alterations of PTC shape represent a common and uniform reaction to chronic tubulointerstitial injury independent of the underlying kidney disease.


Subject(s)
Kidney Transplantation , Renal Insufficiency, Chronic , Humans , Mice , Animals , Kidney Tubules/pathology , Capillaries/pathology , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Fibrosis
2.
Front Physiol ; 14: 1208105, 2023.
Article in English | MEDLINE | ID: mdl-37435301

ABSTRACT

Introduction: We previously reported that malignant hypertension is associated with impaired capillary density of target organs. Here, we tested the hypothesis that stabilization of hypoxia-inducible factor (HIF) in a modified "preconditioning" approach prevents the development of malignant hypertension. To stabilize HIF, we employed pharmacological inhibition of HIF prolyl hydroxylases (PHD), that profoundly affect HIF metabolism. Methods: Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats; controls were sham operated. 2K1C rats received either intermittent injections of the PHD inhibitor ICA (2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate) or placebo. Thirty-five days after clipping, the frequency of malignant hypertension was assessed (based on weight loss and the occurrence of characteristic vascular lesions). In addition, kidney injury was compared between all ICA treated versus all placebo treated 2K1C, regardless of the occurrence of malignant hypertension. HIF stabilization was evaluated by immunohistochemistry, and HIF target gene expression by RT-PCR. Results: Blood pressure was elevated to the same degree in ICA- and placebo-treated 2K1C compared to control rats. ICA treatment did not affect the frequency of malignant hypertension or the extent of kidney tissue fibrosis, inflammation, or capillary density. There was a trend towards higher mortality and worse kidney function in ICA-treated 2K1C rats. ICA increased the number of HIF-1α-positive renal tubular cell nuclei and induced several HIF-1 target genes. In contrast, expression of HIF-2α protein as well as HIF-2 target genes were markedly enhanced by 2K1C hypertension, irrespective of ICA treatment. Discussion: We conclude that intermittent PHD inhibition did not ameliorate severe renovascular hypertension in rats. We speculate that the unexpected strong renal accumulation of HIF-2α in renovascular hypertension, which could not be further augmented by ICA, may contribute to the lack of a benefit from PHD inhibition.

3.
Kidney Int ; 104(1): 90-107, 2023 07.
Article in English | MEDLINE | ID: mdl-37121432

ABSTRACT

The polyamines spermidine and spermine and their common precursor molecule putrescine are involved in tissue injury and repair. Here, we test the hypothesis that impaired polyamine homeostasis contributes to various kidney pathologies in mice during experimental models of ischemia-reperfusion, transplantation, rhabdomyolysis, cyclosporine treatment, arterial hypertension, diabetes, unilateral ureteral obstruction, high oxalate feeding, and adenine-induced injuries. We found a remarkably similar pattern in most kidney pathologies with reduced expression of enzymes involved in polyamine synthesis together with increased expression of polyamine degrading enzymes. Transcript levels of amine oxidase copper-containing 1 (Aoc1), an enzyme which catalyzes the breakdown of putrescine, were barely detectable by in situ mRNA hybridization in healthy kidneys. Aoc1 was highly expressed upon various experimental kidney injuries resulting in a significant reduction of kidney putrescine content. Kidney levels of spermine were also significantly reduced, whereas spermidine was increased in response to ischemia-reperfusion injury. Increased Aoc1 expression in injured kidneys was mainly accounted for by an Aoc1 isoform that harbors 22 additional amino acids at its N-terminus and shows increased secretion. Mice with germline deletion of Aoc1 and injured kidneys showed no decrease of kidney putrescine content; although they displayed no overt phenotype, they had fewer tubular casts upon ischemia-reperfusion injury. Hyperosmotic stress stimulated AOC1 expression at the transcriptional and post-transcription levels in metanephric explants and kidney cell lines. AOC1 expression was also significantly enhanced after kidney transplantation in humans. These data demonstrate that the kidneys respond to various forms of injury with down-regulation of polyamine synthesis and activation of the polyamine breakdown pathway. Thus, an imbalance in kidney polyamines may contribute to various etiologies of kidney injury.


Subject(s)
Amine Oxidase (Copper-Containing) , Reperfusion Injury , Humans , Mice , Animals , Polyamines/metabolism , Spermidine/metabolism , Putrescine/metabolism , Spermine/metabolism , Spermine/pharmacology , Acetyltransferases/genetics , Acetyltransferases/metabolism , Kidney/pathology , Amine Oxidase (Copper-Containing)/metabolism , Reperfusion Injury/pathology , Gene Expression
4.
Kidney Int ; 102(4): 686-688, 2022 10.
Article in English | MEDLINE | ID: mdl-36150758

ABSTRACT

Labes et al. analyze the phosphoproteome in a mouse model of chronic cyclosporine A nephrotoxicity and detect significant changes in the angiogenic pathway. Furthermore, they observe reduced hemoglobin levels and capillary rarefaction in the kidney. The authors show that coadministration of the hypoxia-inducible factor prolyl hydroxylase inhibitor daprodustat almost completely prevents changes of the phosphoproteome and capillary rarefaction, suggesting that prolyl hydroxylase domain enzyme inhibitors may preserve microvasculature of the kidney, which is commonly impaired in chronic kidney disease.


Subject(s)
Microvascular Rarefaction , Prolyl-Hydroxylase Inhibitors , Renal Insufficiency, Chronic , Animals , Cyclosporine , Hemoglobins , Hypoxia-Inducible Factor-Proline Dioxygenases , Mice , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Renal Insufficiency, Chronic/drug therapy
6.
J Physiol ; 600(3): 671-694, 2022 02.
Article in English | MEDLINE | ID: mdl-34863041

ABSTRACT

Activation of the hypoxia-signalling pathway induced by deletion of the ubiquitin-ligase von Hippel-Lindau protein causes an endocrine shift of renin-producing cells to erythropoietin (EPO)-expressing cells. However, the underlying mechanisms have not yet been investigated. Since oxygen-regulated stability of hypoxia-inducible transcription factors relevant for EPO expression is dependent on the activity of prolyl-4-hydroxylases (PHD) 2 and 3, this study aimed to determine the relevance of different PHD isoforms for the EPO expression in renin-producing cells in vivo. For this purpose, mice with inducible renin cell-specific deletions of different PHD isoforms were analysed. Our study shows that there are two subgroups of renal renin-expressing cells, juxtaglomerular renin+ cells and platelet-derived growth factor receptor-ß+ interstitial renin+ cells. These interstitial renin+ cells belong to the cell pool of native EPO-producing cells and are able to express EPO and renin in parallel. In contrast, co-deletion of PHD2 and PHD3, but not PHD2 deletion alone, induces EPO expression in juxtaglomerular and hyperplastic renin+ cells and downregulates renin expression. A strong basal PHD3 expression in juxtaglomerular renin+ cells seems to prevent the hypoxia-inducible transcription factor-2-dependent phenotype shift into EPO cells. In summary, PHDs seem important for the stabilization of the juxtaglomerular renin cell phenotype. Moreover, these findings reveal tubulointerstitial cells as a novel site of renal renin expression and suggest a high endocrine plasticity of these cells. Our data concerning the distinct expression patterns and functions of PHD2 and PHD3 provide new insights into the regulation of renin-producing cells and highlight the need for selective PHD inhibitors. KEY POINTS: Renal renin-expressing cells can be clearly distinguished into two subgroups, the typical juxtaglomerular renin-producing cells and interstitial renin+ cells. Interstitial renin+ cells belong to the cell pool of native erythropoietin (EPO)-producing cells, show a fast EPO response to acute hypoxia-inducible factor-2 (HIF-2) stabilization and are able to express EPO and renin in parallel. Only co-deletion of the prolyl-4-hydroxylases (PHD) 2 and 3, but not PHD2 deletion alone, induces EPO expression in juxtaglomerular renin+ cells. Chronic HIF-2 stabilization in juxtaglomerular renin-expressing cells leads to their phenotypic shift into EPO-producing cells. A strong basal PHD3 expression in juxtaglomerular renin+ cells seems to prevent a HIF-2-dependent phenotype shift into EPO cells suggesting PHD3 fulfils a stabilizer function for the juxtaglomerular renin cell phenotype.


Subject(s)
Erythropoietin , Animals , Erythropoietin/genetics , Erythropoietin/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases , Kidney/metabolism , Mice , Procollagen-Proline Dioxygenase , Renin/metabolism
7.
Med Klin Intensivmed Notfmed ; 116(8): 665-671, 2021 Nov.
Article in German | MEDLINE | ID: mdl-34605939

ABSTRACT

In the second phase of shock therapy, we regularly find fluid overload with edema in our patients, which not only involves the skin and interstitial tissue but can also impair kidney, liver and pulmonary function. Revision of the Starling principle and new insights into physiology of the endothelial glycocalyx have important implications for fluid therapy in intensive care medicine. Determination of fluid overload and an appropriate therapy with either diuretics or ultrafiltration are the focus of "late goal-directed fluid removal" management.


Subject(s)
Critical Care , Fluid Therapy , Diuretics , Edema , Glycocalyx , Humans
8.
Dtsch Med Wochenschr ; 146(15): 977-981, 2021 08.
Article in German | MEDLINE | ID: mdl-34344033

ABSTRACT

Optimization of intravascular volume is crucial for patients who are at risk or undergo Acute Kidney Injury. In sepsis or after acute fluid loss extensive fluid expansion is mostly needed. However, in cardiorenal syndroms fluid overload can even lead to AKI itself and reduction of intravascular volume is needed. Thus, an individualized fluid guidance in terms of a "fluid management stewartship" for the right patient, the right drug, the right route and the right dose 1 has to be applied.


Subject(s)
Acute Kidney Injury , Fluid Therapy , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Humans
10.
Cell Tissue Res ; 381(1): 125-140, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32189058

ABSTRACT

The role of the hypoxia-inducible transcription factor (HIF) pathway in renal lipid metabolism is largely unknown. As HIF stabilizing prolyl hydroxylase (PHD) inhibitors are currently investigated in clinical trials for the treatment of renal anemia, we studied the effects of genetic deletion and pharmacological inhibition of PHDs on renal lipid metabolism in transgenic mice and human primary tubular epithelial cells (hPTEC). Tubular cell-specific deletion of HIF prolyl hydroxylase 2 (Phd2) increased the size of Oil Red-stained lipid droplets in mice. In hPTEC, the PHD inhibitors (PHDi) DMOG and ICA augmented lipid accumulation, which was visualized by Oil Red staining and assessed by microscopy and an infrared imaging system. PHDi-induced lipid accumulation required the exogenous availability of fatty acids and was observed in both proximal and distal hPTEC. PHDi treatment was not associated with structural features of cytotoxicity in contrast to treatment with the immunosuppressant cyclosporine A (CsA). PHDi and CsA differentially upregulated the expression of the lipid droplet-associated genes PLIN2, PLIN4 and HILPDA. Both PHDi and CsA activated AMP-activated protein kinase (AMPK) indicating the initiation of a metabolic stress response. However, only CsA triggered endoplasmic reticulum (ER) stress as determined by the increased mRNA expression of multiple ER stress markers but CsA-induced ER stress was not linked to lipid accumulation. Our data raise the possibility that PHD inhibition may protect tubular cells from toxic free fatty acids by trapping them as triacylglycerides in lipid droplets. This mechanism might contribute to the renoprotective effects of PHDi in experimental kidney diseases.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Kidney Diseases/drug therapy , Lipid Metabolism/drug effects , Prolyl-Hydroxylase Inhibitors , Animals , Cells, Cultured , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/drug effects , Humans , Kidney Tubules/cytology , Kidney Tubules/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Prolyl-Hydroxylase Inhibitors/pharmacology , Prolyl-Hydroxylase Inhibitors/therapeutic use
11.
Nat Rev Nephrol ; 15(9): 559-575, 2019 09.
Article in English | MEDLINE | ID: mdl-31213698

ABSTRACT

Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.


Subject(s)
Extracellular Traps/physiology , Inflammation/physiopathology , Wound Healing/physiology , Wounds and Injuries/physiopathology , Animals , Humans
12.
Kidney Int ; 96(2): 378-396, 2019 08.
Article in English | MEDLINE | ID: mdl-31146971

ABSTRACT

Prolyl hydroxylase domain enzyme inhibitors (PHDIs) stabilize hypoxia-inducible factors (HIFs), and are protective in models of acute ischemic and inflammatory kidney disease. Whether PHDIs also confer protection in chronic inflammatory kidney disease models remains unknown. Here we investigated long-term effects of PHDI treatment in adenine-induced nephropathy as a model for chronic tubulointerstitial nephritis. After three weeks, renal dysfunction and tubulointerstitial damage, including proximal and distal tubular injury, tubular dilation and renal crystal deposition were significantly attenuated in PHDI-treated (the isoquinoline derivative ICA and Roxadustat) compared to vehicle-treated mice with adenine-induced nephropathy. Crystal-induced renal fibrosis was only partially diminished by treatment with ICA. Renoprotective effects of ICA treatment could not be attributed to changes in adenine metabolism or urinary excretion of the metabolite 2,8-dihydroxyadenine. ICA treatment reduced inflammatory infiltrates of F4/80+ mononuclear phagocytes in the kidneys and supported a regulatory, anti-inflammatory immune response. Furthermore, interstitial deposition of complement C1q was decreased in ICA-treated mice fed an adenine-enriched diet. Tubular cell-specific HIF-1α and myeloid cell-specific HIF-1α and HIF-2α expression were not required for the renoprotective effects of ICA. In contrast, depletion of mononuclear phagocytes with clodronate largely abolished the nephroprotective effects of PHD inhibition. Thus, our findings indicate novel and potent systemic anti-inflammatory properties of PHDIs that confer preservation of kidney function and structure in chronic tubulointerstitial inflammation and might counteract kidney disease progression.


Subject(s)
Nephritis, Interstitial/drug therapy , Phagocytes/drug effects , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Renal Insufficiency, Chronic/prevention & control , Adenine/metabolism , Adenine/toxicity , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Clodronic Acid/pharmacology , Complement C1q/immunology , Complement C1q/metabolism , Disease Models, Animal , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/therapeutic use , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Kidney Tubules/cytology , Kidney Tubules/drug effects , Kidney Tubules/immunology , Kidney Tubules/pathology , Male , Mice , Mice, Transgenic , Nephritis, Interstitial/blood , Nephritis, Interstitial/chemically induced , Nephritis, Interstitial/immunology , Phagocytes/immunology , Prolyl Hydroxylases/immunology , Prolyl-Hydroxylase Inhibitors/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , Renal Insufficiency, Chronic/immunology
14.
J Am Soc Nephrol ; 30(2): 228-242, 2019 02.
Article in English | MEDLINE | ID: mdl-30606785

ABSTRACT

BACKGROUND: Transepithelial chloride- secretion, through the chloride channels cystic fibrosis transmembrane conductance regulator (CFTR) and TMEM16A (anoctamin 1), drives cyst enlargement in polycystic kidney disease (PKD). Polycystic kidneys are hypoxic, and oxidative stress activates TMEM16A. However, mechanisms for channel activation in PKD remain obscure. METHODS: Using tissue samples from patients with autosomal dominant PKD, embryonic kidney cultures, and an MDCK in vitro cyst model, we assessed peroxidation of plasma membrane phospholipids in human and mouse polycystic kidneys. We also used electrophysiologic Ussing chamber and patch clamp experiments to analyze activation of TMEM16A and growth of renal cysts. RESULTS: Peroxidation of phospholipids in human and mouse kidneys as well as MDCK cysts in vitro is probably due to enhanced levels of reactive oxygen species. Lipid peroxidation correlated with increased cyst volume as shown in renal cultures and MDCK cysts in three-dimensional cultures. Reactive oxygen species and lipid peroxidation strongly activated TMEM16A, leading to depletion of calcium ion stores and store-operated calcium influx. Activation of TMEM16A- and CFTR-dependent chloride secretion strongly augmented cyst growth. Exposure to scavengers of reactive oxygen species, such as glutathione, coenzyme Q10, or idebenone (a synthetic coenzyme Q10 homolog), as well as inhibition of oxidative lipid damage by ferrostatin-1 largely reduced activation of TMEM16A. Inhibition of TMEM16A reduced proliferation and fluid secretion in vitro. CONCLUSIONS: These findings indicate that activation of TMEM16A by lipid peroxidation drives growth of renal cysts. We propose direct inhibition of TMEM16A or inhibition of lipid peroxidation as potentially powerful therapeutic approaches to delay cyst development in PKD.


Subject(s)
Anoctamin-1/genetics , Cell Proliferation/drug effects , Lipid Peroxidation/physiology , Polycystic Kidney, Autosomal Dominant/metabolism , Reactive Oxygen Species/metabolism , Animals , Biopsy, Needle , Cell Proliferation/genetics , Cells, Cultured , Humans , Immunohistochemistry , In Vitro Techniques , Mice , Oxidative Stress , Polycystic Kidney, Autosomal Dominant/pathology , Sensitivity and Specificity
15.
ChemMedChem ; 14(1): 94-99, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30380199

ABSTRACT

Prolyl hydroxylation domain (PHD) enzymes catalyze the hydroxylation of the transcription factor hypoxia-inducible factor (HIF) and serve as cellular oxygen sensors. HIF and the PHD enzymes regulate numerous potentially tissue-protective target genes which can adapt cells to metabolic and ischemic stress. We describe a fluorescent PHD inhibitor (1-chloro-4-hydroxybenzo[g]isoquinoline-3-carbonyl)glycine which is suited to fluorescence-based detection assays and for monitoring PHD inhibitors in biological systems. In cell-based assays, application of the fluorescent PHD inhibitor allowed co-localization with a cellular PHD enzyme and led to live cell imaging of processes involved in cellular oxygen sensing.


Subject(s)
Benzylisoquinolines/pharmacology , Fluorescent Dyes/pharmacology , Molecular Imaging/methods , Optical Imaging/methods , Prolyl Hydroxylases/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Benzylisoquinolines/chemical synthesis , Benzylisoquinolines/chemistry , Biocatalysis/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Molecular Structure , Prolyl-Hydroxylase Inhibitors/chemical synthesis , Prolyl-Hydroxylase Inhibitors/chemistry , Structure-Activity Relationship
16.
Kidney Int ; 94(5): 887-899, 2018 11.
Article in English | MEDLINE | ID: mdl-30173898

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations of the PKD1 gene and characterized by growth of bilateral renal cysts. Cyst growth is accompanied by regional hypoxia and induction of hypoxia-inducible factor (HIF)-1α in cyst-lining epithelial cells. To determine the relevance of HIF-1α for cyst growth in vivo we used an inducible kidney epithelium-specific knockout mouse to delete Pkd1 at postnatal day 20 or 35 to induce polycystic kidney disease of different severity and analyzed the effects of Hif-1α co-deletion and HIF-1α stabilization using a prolyl-hydroxylase inhibitor. HIF-1α expression was enhanced in kidneys with progressive cyst growth induced by early Pkd1 deletion, but unchanged in the milder phenotype induced by later Pkd1 deletion. Hif-1α co-deletion significantly attenuated cyst growth in the severe, but not in the mild, phenotype. Application of a prolyl-hydroxylase inhibitor resulted in severe aggravation of the mild phenotype with rapid loss of renal function. HIF-1α expression was associated with induction of genes that mediate calcium-activated chloride secretion. Thus, HIF-1α does not seem to play a role in early cyst formation, but accelerates cyst growth during progressive polycystic kidney disease. This novel mechanism of cyst growth may qualify as a therapeutic target.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Polycystic Kidney, Autosomal Dominant/etiology , Animals , Disease Models, Animal , Disease Progression , Mice , Polycystic Kidney, Autosomal Dominant/therapy
17.
PLoS One ; 13(7): e0200259, 2018.
Article in English | MEDLINE | ID: mdl-30011301

ABSTRACT

OBJECTIVES: In human chronic kidney disease (CKD) the extent of renal tubulointerstitial fibrosis correlates with progressive loss of renal function. However, fibrosis can so far only be assessed by histology of kidney biopsies. Magnetic resonance imaging (MRI) can provide information about tissue architecture, but its potential to assess fibrosis and inflammation in diseased kidneys remains poorly defined. MATERIALS AND METHODS: We evaluated excised kidneys in a murine adenine-induced nephropathy model for CKD by MRI and correlated quantitative MRI parameters (T1, T2, and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy) with histological hallmarks of progressive CKD, including renal fibrosis, inflammation, and microvascular rarefaction. Furthermore, we analyzed the effects of paraformaldehyde fixation on MRI parameters by comparing kidney samples before and after fixation with paraformaldehyde. RESULTS: In diseased kidneys T2 and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy in the renal cortex and/or outer medulla were significantly different from those in control kidneys. In particular, T2 relaxation time was the best parameter to distinguish control and CKD groups and correlated very well with the extent of fibrosis, inflammatory infiltrates, tubular dilation, crystal deposition, and loss of peritubular capillaries and normal tubules in the renal cortex and outer medulla. Fixation with paraformaldehyde had no impact on T2 relaxation time and fractional anisotropy, whereas T1 times significantly decreased and T2* times and apparent diffusion coefficients increased in fixed kidney tissue. CONCLUSIONS: MRI parameters provide a promising approach to quantitatively assess renal fibrosis and inflammation in CKD. Especially T2 relaxation time correlates well with histological features of CKD and is not influenced by paraformaldehyde fixation of kidney samples. Thus, T2 relaxation time might be a candidate parameter for non-invasive assessment of renal fibrosis in human patients.


Subject(s)
Fibrosis/diagnostic imaging , Kidney/diagnostic imaging , Renal Insufficiency, Chronic/diagnostic imaging , Animals , Disease Models, Animal , Fibrosis/pathology , Kidney/pathology , Magnetic Resonance Imaging , Mice , Renal Insufficiency, Chronic/pathology
18.
J Immunol ; 197(10): 4034-4041, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27798163

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α), which accumulates in mammalian host organisms during infection, supports the defense against microbial pathogens. However, whether and to what extent HIF-1α expressed by myeloid cells contributes to the innate immune response against Leishmania major parasites is unknown. We observed that Leishmania-infected humans and L. major-infected C57BL/6 mice exhibited substantial amounts of HIF-1α in acute cutaneous lesions. In vitro, HIF-1α was required for leishmanicidal activity and high-level NO production by IFN-γ/LPS-activated macrophages. Mice deficient for HIF-1α in their myeloid cell compartment had a more severe clinical course of infection and increased parasite burden in the skin lesions compared with wild-type controls. These findings were paralleled by reduced expression of type 2 NO synthase by lesional CD11b+ cells. Together, these data illustrate that HIF-1α is required for optimal innate leishmanicidal immune responses and, thereby, contributes to the cure of cutaneous leishmaniasis.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Myeloid Cells/metabolism , Skin/parasitology , Animals , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Immunity, Innate , Interferon-gamma/pharmacology , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/genetics , Parasite Load , Skin/pathology
19.
Purinergic Signal ; 12(4): 687-695, 2016 12.
Article in English | MEDLINE | ID: mdl-27565965

ABSTRACT

Polycystic kidney diseases are characterized by numerous renal cysts that continuously enlarge resulting in compression of intact nephrons and tissue hypoxia. Recently, we have shown that hypoxia-inducible factor (HIF)-1α promotes secretion-dependent cyst expansion, presumably by transcriptional regulation of proteins that are involved in calcium-activated chloride secretion. Here, we report that HIF-1α directly activates expression of the purinergic receptor P2Y2R in human primary renal tubular cells. In addition, we found that P2Y2R is highly expressed in cyst-lining cells of human ADPKD kidneys as well as PKD1 orthologous mouse kidneys. Knockdown of P2Y2R in renal collecting duct cells inhibited calcium-dependent chloride secretion in Ussing chamber analyses. In line with these findings, knockdown of P2Y2R retarded cyst expansion in vitro and prevented ATP- and HIF-1α-dependent cyst growth. In conclusion, P2Y2R mediates ATP-dependent cyst growth and is transcriptionally regulated by HIF-1α. These findings provide further mechanistic evidence on how hypoxia promotes cyst growth.


Subject(s)
Cysts/metabolism , Epithelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Tubules, Proximal/metabolism , Receptors, Purinergic P2Y2/metabolism , Animals , Cysts/pathology , Epithelial Cells/cytology , Female , Humans , Kidney Tubules, Proximal/cytology , Male , Mice , Mice, Knockout , Middle Aged
20.
Curr Opin Nephrol Hypertens ; 25(3): 180-6, 2016 May.
Article in English | MEDLINE | ID: mdl-27023836

ABSTRACT

PURPOSE OF REVIEW: Kidney development depends on outgrowth of the ureteric bud into the metanephric mesenchyme. The number of ureteric bud branching events determines the final number of nephrons, which correlates inversely with the risk for development of chronic kidney disease and arterial hypertension during lifetime. The purpose of this review is to highlight the influence of oxygen on nephrogenesis and to describe cellular mechanisms by which hypoxia can impair nephron formation. RECENT FINDINGS: Although kidney development normally takes place under hypoxic conditions, nephrogenesis is impaired when oxygen availability falls below the usual range. Hypoxia-inducible factors (HIF) play an important role in linking low oxygen concentrations to the biology of nephron formation, but their effect appears to be cell type dependent. In ureteric bud cells, HIF stimulates tubulogenesis, whereas HIF stabilization in cells of the metanephric mesenchyme results in secretion of growth factors, including vascular endothelial growth factor A, which in aggregate inhibit ureteric bud branching. The balance between pro and antibranching effects may be altered in various ways, but the inhibitory effect usually seems to predominate under reduced oxygen concentrations, explaining how intrauterine hypoxia can lead to low nephron numbers. SUMMARY: Oxygen availability has a complex influence on nephrogenesis. Oxygen concentrations outside an optimal low range may affect nephron endowment. Associations between placental insufficiency and increased risk for chronic kidney disease and arterial hypertension during later life may to a large extent be due to direct effects of reduced oxygen supply to the metanephric mesenchyme and mediated through the HIF pathway.


Subject(s)
Hypoxia/metabolism , Kidney Diseases/metabolism , Kidney/metabolism , Morphogenesis/physiology , Nephrons/metabolism , Humans , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...