Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
STAR Protoc ; 5(2): 103038, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678568

ABSTRACT

Phenotypic and compositional changes of immune cells in cerebrospinal fluid (CSF) can be used as biomarkers to help diagnose and track disease activity for neuroinflammatory and neurodegenerative diseases. Here, we present a workflow to perform high-dimensional immune profiling at single-cell resolution using cytometry by time-of-flight (CyTOF) on cells isolated from the CSF of patients with neuroinflammation. We describe steps for sample collection and preparation, barcoding to allow for multiplexing, and downstream data analysis using R. For complete details on the use and execution of this protocol, please refer to Fernández-Zapata et al.1.

2.
Adv Sci (Weinh) ; : e2308447, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491873

ABSTRACT

Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.

3.
Infection ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326527

ABSTRACT

BACKGROUND: Innate lymphoid cells (ILCs) are key organizers of tissue immune responses and regulate tissue development, repair, and pathology. Persistent clinical sequelae beyond 12 weeks following acute COVID-19 disease, named post-COVID syndrome (PCS), are increasingly recognized in convalescent individuals. ILCs have been associated with the severity of COVID-19 symptoms but their role in the development of PCS remains poorly defined. METHODS AND RESULTS: Here, we used multiparametric immune phenotyping, finding expanded circulating ILC precursors (ILCPs) and concurrent decreased group 2 innate lymphoid cells (ILC2s) in PCS patients compared to well-matched convalescent control groups at > 3 months after infection or healthy controls. Patients with PCS showed elevated expression of chemokines and cytokines associated with trafficking of immune cells (CCL19/MIP-3b, FLT3-ligand), endothelial inflammation and repair (CXCL1, EGF, RANTES, IL-1RA, PDGF-AA). CONCLUSION: These results define immunological parameters associated with PCS and might help find biomarkers and disease-relevant therapeutic strategies.

4.
Nat Commun ; 14(1): 7728, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007484

ABSTRACT

Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Humans , Myeloid Cells , Granulocytes , Myeloid Progenitor Cells , Vaccination , Multiple Sclerosis/drug therapy , Antibodies, Viral
5.
J Clin Med ; 12(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37892685

ABSTRACT

BACKGROUND: Operational tolerance as the ability to accept the liver transplant without pharmacological immunosuppression is a common phenomenon in the long-term course. However, it is currently underutilized due to a lack of simple diagnostic support and fear of rejection despite its recognized benefits. In the present work, we present a simple score based on clinical parameters to estimate the probability of tolerance. PATIENTS AND METHODS: In order to estimate the probability of tolerance, clinical parameters from 82 patients after LT who underwent weaning from the IS for various reasons at our transplant center were extracted from a prospectively organized database and analyzed retrospectively. Univariate testing as well as multivariable logistic regression analysis were performed to assess the association of clinical variables with tolerance in the real-world setting. RESULTS: The most important factors associated with tolerance after multivariable logistic regression were IS monotherapy, male sex, history of hepatocellular carcinoma pretransplant, time since LT, and lack of rejection. These five predictors were retained in an approximate model that could be presented as a simple scoring system to estimate the clinical probability of tolerance or IS dispensability with good predictive performance (AUC = 0.89). CONCLUSION: In parallel with the existence of a tremendous need for further research on tolerance mechanisms, the presented score, after validation in a larger collective preferably in a multicenter setting, could be easily and safely applied in the real world and already now address all three levels of prevention in LT patients over the long-term course.

6.
Biomaterials ; 294: 121971, 2023 03.
Article in English | MEDLINE | ID: mdl-36634491

ABSTRACT

In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines. This inflammatory secretome modulation limits the application potential of unmodified IVT-mRNA for cell therapy manufacturing, pro-angiogenic therapy and regenerative medicine. To uncouple immunogenicity from the protein expression functionality, we immuno-engineered IVT-mRNA with different chemically modified ribonucleotides. 5-Methoxy-uridine-modification of IVT-mRNA rescued the endogenous secretome pattern of transfected cells and prolonged secretion of IVT-mRNA-encoded VEGF. We found that high secretion of IVT-mRNA-encoded protein further depends on optimized cell adhesion. Cell encapsulation in a collagen-hyaluronic acid hydrogel increased secretion of IVT-mRNA-encoded VEGF and augmented the endogenous secretion of supporting pro-angiogenic mediators, such as HGF. Integrating minimally immunogenic mRNA technology with predesigned matrix-derived cues allows for the synergistic combination of multiple dimensions of cell manipulation and opens routes for biomaterial-based delivery of mRNA-engineered cell products. Such multimodal systems could present a more biologically relevant way to therapeutically address complex multifactorial processes such as tissue ischemia, angiogenesis, and regeneration.


Subject(s)
Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Secretome , Regenerative Medicine/methods
7.
Nat Commun ; 13(1): 7210, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418303

ABSTRACT

Myeloid cells are suggested as an important player in Alzheimer´s disease (AD). However, its continuum of phenotypic and functional changes across different body compartments and their use as a biomarker in AD remains elusive. Here, we perform multiple state-of-the-art analyses to phenotypically and metabolically characterize immune cells between peripheral blood (n = 117), cerebrospinal fluid (CSF, n = 117), choroid plexus (CP, n = 13) and brain parenchyma (n = 13). We find that CSF cells increase expression of markers involved in inflammation, phagocytosis, and metabolism. Changes in phenotype of myeloid cells from AD patients are more pronounced in CP and brain parenchyma and upon in vitro stimulation, suggesting that AD-myeloid cells are more vulnerable to environmental changes. Our findings underscore the importance of myeloid cells in AD and the detailed characterization across body compartments may serve as a resource for future studies focusing on the assessment of these cells as biomarkers in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Choroid Plexus/metabolism , Myeloid Cells/metabolism , Myeloid Progenitor Cells/metabolism , Biomarkers/metabolism , Phenotype
8.
EMBO Mol Med ; 14(9): e15687, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35919953

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL-17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.


Subject(s)
Calcium Release Activated Calcium Channels , Inflammatory Bowel Diseases , Animals , CD8-Positive T-Lymphocytes/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Humans , Immunity, Innate , Interleukin-17/metabolism , Interleukin-6/metabolism , Mice , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Th17 Cells/metabolism
9.
Front Immunol ; 13: 907994, 2022.
Article in English | MEDLINE | ID: mdl-35860238

ABSTRACT

In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of pregnancy. However, the underlying mechanisms driving this effect are poorly understood. Evidence suggests that CD56bright NK cell frequencies increase during pregnancy. Here, we analyze pregnancy-related NK cell shifts in a large longitudinal cohort of pregnant women with and without MS, and provide in-depth phenotyping of NK cells. In healthy pregnancy and pregnancy in MS, peripheral blood NK cells showed significant frequency shifts, notably an increase of CD56bright NK cells and a decrease of CD56dim NK cells toward the third trimester, indicating a general rather than an MS-specific phenomenon of pregnancy. Additional follow-ups in women with MS showed a reversal of NK cell changes postpartum. Moreover, high-dimensional profiling revealed a specific CD56bright subset with receptor expression related to cytotoxicity and cell activity (e.g., CD16+ NKp46high NKG2Dhigh NKG2Ahigh phenotype) that may drive the expansion of CD56bright NK cells during pregnancy in MS. Our data confirm that pregnancy promotes pronounced shifts of NK cells toward the regulatory CD56bright population. Although exploratory results on in-depth CD56bright phenotype need to be confirmed in larger studies, our findings suggest an increased regulatory NK activity, thereby potentially contributing to disease amelioration of MS during pregnancy.


Subject(s)
Multiple Sclerosis , CD56 Antigen/metabolism , Cohort Studies , Female , Humans , Killer Cells, Natural/metabolism , Multiple Sclerosis/metabolism , Phenotype , Pregnancy
10.
Microbiome ; 10(1): 57, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379337

ABSTRACT

BACKGROUND: Caloric restriction can delay the development of metabolic diseases ranging from insulin resistance to type 2 diabetes and is linked to both changes in the composition and metabolic function of the gut microbiota and immunological consequences. However, the interaction between dietary intake, the microbiome, and the immune system remains poorly described. RESULTS: We transplanted the gut microbiota from an obese female before (AdLib) and after (CalRes) an 8-week very-low-calorie diet (800 kcal/day) into germ-free mice. We used 16S rRNA sequencing to evaluate taxa with differential abundance between the AdLib- and CalRes-microbiota recipients and single-cell multidimensional mass cytometry to define immune signatures in murine colon, liver, and spleen. Recipients of the CalRes sample exhibited overall higher alpha diversity and restructuring of the gut microbiota with decreased abundance of several microbial taxa (e.g., Clostridium ramosum, Hungatella hathewayi, Alistipi obesi). Transplantation of CalRes-microbiota into mice decreased their body fat accumulation and improved glucose tolerance compared to AdLib-microbiota recipients. Finally, the CalRes-associated microbiota reduced the levels of intestinal effector memory CD8+ T cells, intestinal memory B cells, and hepatic effector memory CD4+ and CD8+ T cells. CONCLUSION: Caloric restriction shapes the gut microbiome which can improve metabolic health and may induce a shift towards the naïve T and B cell compartment and, thus, delay immune senescence. Understanding the role of the gut microbiome as mediator of beneficial effects of low calorie diets on inflammation and metabolism may enhance the development of new therapeutic treatment options for metabolic diseases. TRIAL REGISTRATION: NCT01105143 , "Effects of negative energy balance on muscle mass regulation," registered 16 April 2010. Video Abstract.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Animals , CD8-Positive T-Lymphocytes , Caloric Restriction , Female , Gastrointestinal Microbiome/physiology , Mice , RNA, Ribosomal, 16S/genetics
11.
Mol Ther Methods Clin Dev ; 25: 52-73, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35252469

ABSTRACT

Solid organ transplant (SOT) recipients receive therapeutic immunosuppression that compromises their immune response to infections and vaccines. For this reason, SOT patients have a high risk of developing severe coronavirus disease 2019 (COVID-19) and an increased risk of death from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Moreover, the efficiency of immunotherapies and vaccines is reduced due to the constant immunosuppression in this patient group. Here, we propose adoptive transfer of SARS-CoV-2-specific T cells made resistant to a common immunosuppressant, tacrolimus, for optimized performance in the immunosuppressed patient. Using a ribonucleoprotein approach of CRISPR-Cas9 technology, we have generated tacrolimus-resistant SARS-CoV-2-specific T cell products from convalescent donors and demonstrate their specificity and function through characterizations at the single-cell level, including flow cytometry, single-cell RNA (scRNA) Cellular Indexing of Transcriptomes and Epitopes (CITE), and T cell receptor (TCR) sequencing analyses. Based on the promising results, we aim for clinical validation of this approach in transplant recipients. Additionally, we propose a combinatory approach with tacrolimus, to prevent an overshooting immune response manifested as bystander T cell activation in the setting of severe COVID-19 immunopathology, and tacrolimus-resistant SARS-CoV-2-specific T cell products, allowing for efficient clearance of viral infection. Our strategy has the potential to prevent severe COVID-19 courses in SOT or autoimmunity settings and to prevent immunopathology while providing viral clearance in severe non-transplant COVID-19 cases.

12.
Cells ; 11(6)2022 03 10.
Article in English | MEDLINE | ID: mdl-35326396

ABSTRACT

Donor variation is a prominent critical issue limiting the applicability of cell-based therapies. We hypothesized that batch effects during propagation of bone marrow stromal cells (BMSCs) in human platelet lysate (hPL), replacing fetal bovine serum (FBS), can affect phenotypic and functional variability. We therefore investigated the impact of donor variation, hPL- vs. FBS-driven propagation and exhaustive proliferation, on BMSC epigenome, transcriptome, phenotype, coagulation risk and osteochondral regenerative function. Notably, propagation in hPL significantly increased BMSC proliferation, created significantly different gene expression trajectories and distinct surface marker signatures, already after just one passage. We confirmed significantly declining proliferative potential in FBS-expanded BMSC after proliferative challenge. Flow cytometry verified the canonical fibroblastic phenotype in culture-expanded BMSCs. We observed limited effects on DNA methylation, preferentially in FBS-driven cultures, irrespective of culture duration. The clotting risk increased over culture time. Moreover, expansion in xenogenic serum resulted in significant loss of function during 3D cartilage disk formation and significantly increased clotting risk. Superior chondrogenic function under hPL-conditions was maintained over culture. The platelet blood group and isoagglutinins had minor impact on BMSC function. These data demonstrate pronounced batch effects on BMSC transcriptome, phenotype and function due to serum factors, partly outcompeting donor variation after just one culture passage.


Subject(s)
Cell Culture Techniques , Mesenchymal Stem Cells , Cell Culture Techniques/methods , Cell Proliferation , Cells, Cultured , Genotype , Humans , Phenotype
13.
Front Cell Dev Biol ; 9: 751590, 2021.
Article in English | MEDLINE | ID: mdl-34869339

ABSTRACT

Adoptive transfer of regulatory T cells (Treg) is a promising new therapeutic option to treat detrimental inflammatory conditions after transplantation and during autoimmune disease. To reach sufficient cell yield for treatment, ex vivo isolated autologous or allogenic Tregs need to be expanded extensively in vitro during manufacturing of the Treg product. However, repetitive cycles of restimulation and prolonged culture have been shown to impact T cell phenotypes, functionality and fitness. It is therefore critical to scrutinize the molecular changes which occur during T cell product generation, and reexamine current manufacturing practices. We performed genome-wide DNA methylation profiling of cells throughout the manufacturing process of a polyclonal Treg product that has proven safety and hints of therapeutic efficacy in kidney transplant patients. We found progressive DNA methylation changes over the duration of culture, which were donor-independent and reproducible between manufacturing runs. Differentially methylated regions (DMRs) in the final products were significantly enriched at promoters and enhancers of genes implicated in T cell activation. Additionally, significant hypomethylation did also occur in promoters of genes implicated in functional exhaustion in conventional T cells, some of which, however, have been reported to strengthen immunosuppressive effector function in Tregs. At the same time, a set of reported Treg-specific demethylated regions increased methylation levels with culture, indicating a possible destabilization of Treg identity during manufacturing, which was independent of the purity of the starting material. Together, our results indicate that the repetitive TCR-mediated stimulation lead to epigenetic changes that might impact functionality of Treg products in multiple ways, by possibly shifting to an effector Treg phenotype with enhanced functional activity or by risking destabilization of Treg identity and impaired TCR activation. Our analyses also illustrate the value of epigenetic profiling for the evaluation of T cell product manufacturing pipelines, which might open new avenues for the improvement of current adoptive Treg therapies with relevance for conventional effector T cell products.

14.
Front Med (Lausanne) ; 8: 739987, 2021.
Article in English | MEDLINE | ID: mdl-34765617

ABSTRACT

Advanced therapy medicinal products (ATMPs) are potential game changers in modern medical care with an anticipated major impact for patients and society. They are a new drug class often referred to as "living drugs," and are based on complex components such as vectors, cells and even tissues. The production of such ATMPs involves innovative biotechnological methods. In this survey, we have assessed the perception of European citizens regarding ATMPs and health care in Europe, in relation to other important topics, such as safety and security, data protection, climate friendly energy supply, migration, and others. A crucial question was to determine to what extent European citizens wish to support public funding of innovations in healthcare and reimbursement strategies for ATMPs. To answer this, we conducted an online survey in 13 European countries (representative of 85.3% of the entire EU population including the UK in 2020), surveying a total of 7,062 European citizens. The survey was representative with respect to adult age groups and gender in each country. Healthcare had the highest ranking among important societal topics. We found that 83% of the surveyed EU citizens were in support of more public funding of technologies in the field of ATMPs. Interestingly, 74% of respondents are in support of cross-border healthcare for patients with rare diseases to receive ATMP treatments and 61% support the reimbursement of very expensive ATMPs within the European health care system despite the current lack of long-term efficacy data. In conclusion, healthcare is a top ranking issue for European Citizens, who additionally support funding of new technologies to enable the wider application of ATMPs in Europe.

15.
Neurotherapeutics ; 18(3): 1783-1797, 2021 07.
Article in English | MEDLINE | ID: mdl-34244929

ABSTRACT

Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56dimCD94low mature NK cells, while the CD56bright fraction and CD127+ innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56dimCD16++KIR+/-NKG2A-CD94-CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++CD127+ increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients.


Subject(s)
Cellular Senescence/drug effects , Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Killer Cells, Natural/drug effects , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Adult , Cellular Senescence/physiology , Female , Fingolimod Hydrochloride/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Killer Cells, Natural/physiology , Longitudinal Studies , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Prospective Studies
16.
Biofabrication ; 13(4)2021 07 08.
Article in English | MEDLINE | ID: mdl-34111862

ABSTRACT

The therapeutic efficacy of clinically applied mesenchymal stromal cells (MSCs) is limited due to their injection into harshin vivoenvironments, resulting in the significant loss of their secretory function upon transplantation. A potential strategy for preserving their full therapeutic potential is encapsulation of MSCs in a specialized protective microenvironment, for example hydrogels. However, commonly used injectable hydrogels for cell delivery fail to provide the bio-instructive cues needed to sustain and stimulate cellular therapeutic functions. Here we introduce a customizable collagen I-hyaluronic acid (COL-HA)-based hydrogel platform for the encapsulation of MSCs. Cells encapsulated within COL-HA showed a significant expansion of their secretory profile compared to MSCs cultured in standard (2D) cell culture dishes or encapsulated in other hydrogels. Functionalization of the COL-HA backbone with thiol-modified glycoproteins such as laminin led to further changes in the paracrine profile of MSCs. In depth profiling of more than 250 proteins revealed an expanded secretion profile of proangiogenic, neuroprotective and immunomodulatory paracrine factors in COL-HA-encapsulated MSCs with a predicted augmented pro-angiogenic potential. This was confirmed by increased capillary network formation of endothelial cells stimulated by conditioned media from COL-HA-encapsulated MSCs. Our findings suggest that encapsulation of therapeutic cells in a protective COL-HA hydrogel layer provides the necessary bio-instructive cues to maintain and direct their therapeutic potential. Our customizable hydrogel combines bioactivity and clinically applicable properties such as injectability, on-demand polymerization and tissue-specific elasticity, all features that will support and improve the ability to successfully deliver functional MSCs into patients.


Subject(s)
Mesenchymal Stem Cells , Collagen Type I , Endothelial Cells , Humans , Hyaluronic Acid , Hydrogels
18.
Immun Ageing ; 18(1): 20, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879187

ABSTRACT

BACKGROUND: Immune ageing is a result of repetitive microbial challenges along with cell intrinsic or systemic changes occurring during ageing. Mice under 'specific-pathogen-free' (SPF) conditions are frequently used to assess immune ageing in long-term experiments. However, physiological pathogenic challenges are reduced in SPF mice. The question arises to what extent murine experiments performed under SPF conditions are suited to analyze immune ageing in mice and serve as models for human immune ageing. Our previous comparisons of same aged mice with different microbial exposures, unambiguously identified distinct clusters of immune cells characteristic for numerous previous pathogen encounters in particular in pet shop mice. RESULTS: We here performed single cell mass cytometry assessing splenic as secondary and bone marrow as primary lymphoid organ-derived leukocytes isolated from young versus aged SPF mice in order to delineate alterations of the murine hematopoietic system induced during ageing. We then compared immune clusters from young and aged SPF mice to pet shop mice in order to delineate alterations of the murine hematopoietic system induced by physiological pathogenic challenges and those caused by cell intrinsic or systemic changes during ageing. Notably, distinct immune signatures were similarly altered in both pet shop and aged SPF mice in comparison to young SPF mice, including increased frequencies of memory T lymphocytes, effector-cytokine producing T cells, plasma cells and mature NK cells. However, elevated frequencies of CD4+ T cells, total NK cells, granulocytes, pDCs, cDCs and decreased frequencies of naïve B cells were specifically identified only in pet shop mice. In aged SPF mice specifically the frequencies of splenic IgM+ plasma cells, CD8+ T cells and CD4+ CD25+ Treg were increased as compared to pet shop mice and young mice. CONCLUSIONS: Our study dissects firstly how ageing impacts both innate and adaptive immune cells in primary and secondary lymphoid organs. Secondly, it partly distinguishes murine intrinsic immune ageing alterations from those induced by physiological pathogen challenges highlighting the importance of designing mouse models for their use in preclinical research including vaccines and immunotherapies.

19.
Sci Transl Med ; 13(576)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441425

ABSTRACT

Chemotherapy has direct toxic effects on cancer cells; however, long-term cancer control and complete remission are likely to involve CD8+ T cell immune responses. To study the role of CD8+ T cell infiltration in the success of chemotherapy, we examined patients with muscle invasive bladder cancer (MIBC) who were categorized on the basis of the response to neoadjuvant chemotherapy (NAC). We identified the intratumoral CXCR3 chemokine system (ligands and receptor splice variants) as a critical component for tumor eradication upon NAC in MIBC. Through characterization of CD8+ T cells, we found that stem-like T cell subpopulations with abundant CXCR3alt, a variant form of the CXCL11 receptor, responded to CXCL11 in culture as demonstrated by migration and enhanced effector function. In tumor biopsies of patients with MIBC accessed before treatment, CXCL11 abundance correlated with high numbers of tumor-infiltrating T cells and response to NAC. The presence of CXCR3alt and CXCL11 was associated with improved overall survival in MIBC. Evaluation of both CXCR3alt and CXCL11 enabled discrimination between responder and nonresponder patients with MIBC before treatment. We validated the prognostic role of the CXCR3-CXCL11 chemokine system in an independent cohort of chemotherapy-treated and chemotherapy-naïve patients with MIBC from data in TCGA. In summary, our data revealed stimulatory activity of the CXCR3alt-CXCL11 chemokine system on CD8+ T cells that is predictive of chemotherapy responsiveness in MIBC. This may offer immunotherapeutic options for targeted activation of intratumoral stem-like T cells in solid tumors.


Subject(s)
Urinary Bladder Neoplasms , CD8-Positive T-Lymphocytes , Chemokine CXCL10/therapeutic use , Chemokine CXCL11/therapeutic use , Chemokines , Chemotherapy, Adjuvant , Humans , Neoadjuvant Therapy , Receptors, CXCR3 , Urinary Bladder Neoplasms/drug therapy
20.
Am J Transplant ; 21(4): 1603-1611, 2021 04.
Article in English | MEDLINE | ID: mdl-33171020

ABSTRACT

Short-term outcomes in kidney transplantation are marred by progressive transplant failure and mortality secondary to immunosuppression toxicity. Immune modulation with autologous polyclonal regulatory T cell (Treg) therapy may facilitate immunosuppression reduction promoting better long-term clinical outcomes. In a Phase I clinical trial, 12 kidney transplant recipients received 1-10 × 106 Treg per kg at Day +5 posttransplantation in lieu of induction immunosuppression (Treg Therapy cohort). Nineteen patients received standard immunosuppression (Reference cohort). Primary outcomes were rejection-free and patient survival. Patient and transplant survival was 100%; acute rejection-free survival was 100% in the Treg Therapy versus 78.9% in the reference cohort at 48 months posttransplant. Treg therapy revealed no excess safety concerns. Four patients in the Treg Therapy cohort had mycophenolate mofetil withdrawn successfully and remain on tacrolimus monotherapy. Treg infusion resulted in a long-lasting dose-dependent increase in peripheral blood Tregs together with an increase in marginal zone B cell numbers. We identified a pretransplantation immune phenotype suggesting a high risk of unsuccessful ex-vivo Treg expansion. Autologous Treg therapy is feasible, safe, and is potentially associated with a lower rejection rate than standard immunosuppression. Treg therapy may provide an exciting opportunity to minimize immunosuppression therapy and improve long-term outcomes.


Subject(s)
Kidney Transplantation , Feasibility Studies , Graft Rejection/etiology , Graft Rejection/prevention & control , Humans , Immunosuppressive Agents/therapeutic use , Living Donors , Monitoring, Immunologic , T-Lymphocytes, Regulatory
SELECTION OF CITATIONS
SEARCH DETAIL
...