Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 11(1): 17, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35034962

ABSTRACT

Electronic properties of selected quantum dot (QD) systems are surveyed based on the multi-band k·p method, which we benchmark by direct comparison to the empirical tight-binding algorithm, and we also discuss the newly developed "linear combination of quantum dot orbitals" method. Furthermore, we focus on two major complexes: First, the role of antimony incorporation in InGaAs/GaAs submonolayer QDs and In1-xGax AsySb1-y/GaP QDs, and second, the theory of QD-based quantum cascade lasers and the related prospect of room temperature lasing.

2.
Nanoscale ; 10(12): 5591-5598, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29528065

ABSTRACT

We show that one-dimensional (1d) GaN quantum-wires (QWRs) exhibit intense and spectrally sharp emission lines. These QWRs are realized in an entirely self-assembled growth process by molecular beam epitaxy (MBE) on the side facets of GaN/AlN nanowire (NW) heterostructures. Time-integrated and time-resolved photoluminescence (PL) data in combination with numerical calculations allow the identification and assignment of the manifold emission features to three different spatial recombination centers within the NWs. The recombination processes in the QWRs are driven by efficient charge carrier transfer effects between the different optically active regions, providing high intense QWR luminescence despite their small volume. This is deduced by a fast rise time of the QWR PL, which is similar to the fast decay-time of adjacent carrier reservoirs. Such processes, feeding the ultra-narrow QWRs with carriers from the relatively large NWs, can be the key feature towards the realization of future QWR-based devices. While processing of single quantum structures with diameters in the nm range presents a serious obstacle with respect to their integration into electronic or photonic devices, the QWRs presented here can be analyzed and processed using existing techniques developed for single NWs.

3.
Phys Rev Lett ; 116(11): 116802, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035317

ABSTRACT

We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

4.
Nat Commun ; 5: 5721, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25514472

ABSTRACT

Although semiconductor excitons consist of a fermionic subsystem (electron and hole), they carry an integer net spin similar to Cooper-electron-pairs. While the latter cause superconductivity by forming a Bose-Einstein-condensate, excitonic condensation is impeded by, for example, a fast radiative decay of the electron-hole pairs. Here, we investigate the behaviour of two electron-hole pairs in a quantum dot with wurtzite crystal structure evoking a charge carrier separation on the basis of large spontaneous and piezoelectric polarizations, thus reducing carrier overlap and consequently decay probabilities. As a direct consequence, we find a hybrid-biexciton complex with a water molecule-like charge distribution enabling anomalous spin configurations. In contrast to the conventional-biexciton complex with a net spin of s=0, the hybrid-biexciton exhibits s=±3, leading to completely different photoluminescence signatures in addition to drastically enhanced charge carrier-binding energies. Consequently, the biexcitonic cascade via the dark exciton can be enhanced on the rise of temperature as approved by photon cross-correlation measurements.

5.
Nano Lett ; 12(6): 3151-7, 2012 Jun 13.
Article in English | MEDLINE | ID: mdl-22625408

ABSTRACT

We study the electronic structure of ultrathin zinc-blende two-dimensional (2D)-CdSe nanosheets both theoretically, by Hartree-renormalized k·p calculations including Coulomb interaction, and experimentally, by temperature-dependent and time-resolved photoluminescence measurements. The observed 2D-heavy hole exciton states show a strong influence of vertical confinement and dielectric screening. A very weak coupling to phonons results in a low phonon-contribution to the homogeneous line-broadening. The 2D-nanosheets exhibit much narrower ensemble absorption and emission linewidths as compared to the best colloidal CdSe nanocrystallites ensembles. Since those nanoplatelets can be easily stacked and tend to roll up as they are large, we see a way to form new types of multiple quantum wells and II-VI nanotubes, for example, for fluorescence markers.


Subject(s)
Cadmium Compounds/chemistry , Colloids/chemistry , Membranes, Artificial , Nanostructures/chemistry , Nanostructures/ultrastructure , Selenium Compounds/chemistry , Electron Transport , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...