Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1369615, 2024.
Article in English | MEDLINE | ID: mdl-38803570

ABSTRACT

Introduction: Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods: One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results: In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion: The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.


Subject(s)
Coinfection , Fish Diseases , Myxobolus , Myxozoa , Oncorhynchus mykiss , Parasitic Diseases, Animal , Proteomics , Animals , Oncorhynchus mykiss/parasitology , Oncorhynchus mykiss/immunology , Fish Diseases/parasitology , Fish Diseases/immunology , Parasitic Diseases, Animal/immunology , Parasitic Diseases, Animal/parasitology , Coinfection/parasitology , Coinfection/veterinary , Coinfection/immunology , Host-Parasite Interactions/immunology , Proteome , Gills/parasitology , Gills/immunology , Gills/metabolism
2.
Connect Tissue Res ; 63(1): 43-52, 2022 01.
Article in English | MEDLINE | ID: mdl-33467936

ABSTRACT

Purpose: The proper function of the tenocyte network depends on cell-matrix as well as intercellular communication that is mechanosensitive. Building on the concept that the etiopathogenic stimulus for tendon degeneration is the catabolic response of tendon cells to mechanobiologic under-stimulation, we studied the pericellular matrix rich in versican and its predominant proteolytic enzyme ADAMTS-1, as well as Connexin-43 (Cx43), a major gap junction forming protein in tendons, in stress-deprived rat tail tendon fascicles (RTTfs).Materials and Methods: RTTfs were stress-deprived for up to 7 days under tissue culture conditions. RT-qPCR was used to measure mRNA expression of versican, ADAMTS-1, and Cx43. Protein synthesis was determined using Western blotting and immunohistochemistry.Results: Stress-deprivation (SD) caused a statistically significant up-regulation of versican, ADAMTS-1, and Cx43 mRNA expression that was persistent over the 7-day test period. Western blot analysis and immunohistochemical assessment of protein synthesis revealed a marked increase of the respective proteins with SD. Inhibition of proteolytic enzyme activity with ilomastat prevented the increased versican degradation and Cx43 synthesis in 3 days stress-deprived tendons when compared with non-treated, stress-deprived tendons.Conclusion: In the absence of mechanobiological signaling the immediate pericellular matrix is modulated as tendon cells up-regulate their production of ADAMTS-1, and versican with subsequent proteoglycan degradation potentially leading to cell signaling cues increasing Cx43 gap junctional protein. The results also provide further support for the hypothesis that the cellular changes associated with tendinopathy are a result of decreased mechanobiological signaling and a loss of homeostatic cytoskeletal tension.


Subject(s)
Connexin 43/metabolism , Versicans , Animals , Connexins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Tendons/metabolism , Up-Regulation , Versicans/metabolism
3.
BMC Genomics ; 21(1): 336, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32357832

ABSTRACT

BACKGROUND: Norway spruce trees in subalpine forests frequently face infections by the needle rust fungus Chrysomyxa rhododendri, which causes significant growth decline and increased mortality of young trees. Yet, it is unknown whether trees actively respond to fungal attack by activating molecular defence responses and/or respective gene expression. RESULTS: Here, we report results from an infection experiment, in which the transcriptomes (via RNA-Seq analysis) and phenolic profiles (via UHPLC-MS) of control and infected trees were compared over a period of 39 days. Gene expression between infected and uninfected ramets significantly differed after 21 days of infection and revealed already known, but also novel candidate genes involved in spruce molecular defence against pathogens. CONCLUSIONS: Combined RNA-Seq and biochemical data suggest that Norway spruce response to infection by C. rhododendri is restricted locally and primarily activated between 9 and 21 days after infestation, involving a potential isolation of the fungus by a hypersensitive response (HR) associated with an activation of phenolic pathways. Identified key regulatory genes represent a solid basis for further specific analyses in spruce varieties with varying susceptibility, to better characterise resistant clones and to elucidate the resistance mechanism.


Subject(s)
Basidiomycota/physiology , Picea/microbiology , Plant Diseases/microbiology , Plant Immunity/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genome, Plant/genetics , Host-Pathogen Interactions , Metabolic Networks and Pathways , Phenols/chemistry , Phenols/metabolism , Picea/genetics , Picea/metabolism , Plant Diseases/genetics , RNA-Seq , Secondary Metabolism , Signal Transduction , Transcriptome
4.
J Proteomics ; 218: 103724, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32126321

ABSTRACT

We report in this manuscript what is known about the protein makeup of a selection of biological fluids in the domestic dog. The samples we review - amniotic and allantoic fluid, seminal fluid, saliva, bile, synovial fluid, tears - are still very poorly characterized in this species. For some of them we can present results from our own, mainly unpublished experiments. SIGNIFICANCE: The dog is one of the most widespread companion animals, and also of medical relevance as model species for some human diseases. Still, investigation of body fluids other than serum and urine is not so commonly undertaken, although - like in humans - also these sample types may have potential for diagnostic purposes. We compile published data about proteomes of fetal fluids, seminal plasma, saliva, bile, synovial fluid and tears, enriched by some yet unpublished data of our own (proteins of amniotic and allantoic fluid, tears). Closing gaps in our knowledge on dog proteins will further our understanding of (patho)physiological processes.


Subject(s)
Amniotic Fluid , Body Fluids , Animals , Dogs , Proteomics , Saliva , Tears
5.
Proteomes ; 7(3)2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31514421

ABSTRACT

For growth-rate retardation in commercial growing pigs suffering from non-infectious diseases, no biomarker is available for early detection and prevention of the condition or for the diagnosis of affected animals. The point in question is that the underlying pathological pathway of the condition is still unknown and multiple nutritional or management issues could be the cause of the disease. Common health status markers such as acute phase proteins, adenosine deaminase activity or total antioxidant capacity did not show any alteration in the saliva of animals with growth-rate retardation, so other pathways should be affected. The present study investigates saliva samples from animals with the same commercial crossbreed, sex and age, comparing control pigs and pigs with growth-rate retardation. A proteomics approach based on two-dimensional gel electrophoresis including mass spectrometry together with validation experiments was applied for the search of proteins that could help understand disease mechanisms and be used for early disease detection. Two proteins were detected as possible markers of growth-rate retardation, specifically S100A12 and carbonic anhydrase VI. A decrease in innate immune response was confirmed in pigs with growth-rate retardation, however further studies should be necessary to understand the role of the different CA VI proteoforms observed.

6.
Article in English | MEDLINE | ID: mdl-30505807

ABSTRACT

The unicellular protozoan Histomonas meleagridis is notorious for being the causative agent of histomonosis, which can cause high mortality in turkeys and substantial production losses in chickens. The complete absence of commercially available curative strategies against the disease renders the devising of novel approaches a necessity. A fundamental step toward this objective is to understand the flagellate's virulence and attenuation mechanisms. For this purpose we have previously conducted a comparative proteomic analysis of an in vitro cultivated virulent and attenuated histomonad parasite using two-dimensional electrophoresis and MALDI-TOF/TOF. The current work aimed to substantially extend the knowledge of the flagellate's proteome by applying 2D-DIGE and sequential window acquisition of all theoretical mass spectra (SWATH) MS as tools on the two well-defined strains. In the gel-based experiments, 49 identified protein spots were found to be differentially expressed, of which 37 belonged to the in vitro cultivated virulent strain and 12 to the attenuated one. The most frequently identified proteins in the virulent strain take part in cytoskeleton formation, carbohydrate metabolism and adaptation to stress. However, post-translationally modified or truncated ubiquitous cellular proteins such as actin and GAPDH were identified as upregulated in multiple gel positions. This indicated their contribution to processes not related to cytoskeleton and carbohydrate metabolism, such as fibronectin or plasminogen binding. Proteins involved in cell division and cytoskeleton organization were frequently observed in the attenuated strain. The findings of the gel-based studies were supplemented by the gel-free SWATH MS analysis, which identified and quantified 42 significantly differentially regulated proteins. In this case proteins with peptidase activity, metabolic proteins and actin-regulating proteins were the most frequent findings in the virulent strain, while proteins involved in hydrogenosomal carbohydrate metabolism dominated the results in the attenuated one.


Subject(s)
Proteome/metabolism , Proteomics/methods , Trichomonadida/metabolism , Virulence Factors/metabolism , Actins , Animals , Green Fluorescent Proteins , Poultry Diseases , Protozoan Infections , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Virulence
7.
Fish Shellfish Immunol ; 75: 41-47, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29407612

ABSTRACT

A proteomic and biochemical approach was performed to assess the effects of an induced muscle injury on the haemolymph of bivalve molluscs. For this purpose, Mytilus galloprovincialis were exposed to puncture of adductor muscle for three consecutive days, and their haemolymph proteome was then compared to healthy animals using 2-dimensional electrophoresis (2-DE) to identify proteins that differed significantly in abundance. Those proteins were then subjected to tandem mass spectrometry and 6 proteins, namely myosin, tropomyosin, CuZn superoxide dismutase (SOD), triosephosphate isomerase, EP protein and small heat shock protein were identified. SOD and tropomyosin changes were verified by spectrophotometric measurements and western blotting, respectively. As some of the proteins identified are related to muscular damage and oxidative stress, other biomarkers associated with these processes that can be evaluated by automatic biochemical assays were measured including troponin, creatine kinase (CK), and aspartate aminotransferase (AST) for muscle damage, and SOD, trolox equivalent antioxidant capacity (TEAC) and esterase activity (EA) for oxidative stress. Significantly higher concentrations of troponin, CK, AST, and TEAC were observed in mussels after puncture, being also possible biomarkers of non-specific induced damage.


Subject(s)
Acute-Phase Reaction/immunology , Hemolymph/immunology , Immunity, Innate , Mytilus/immunology , Proteome/immunology , Animals , Biomarkers/metabolism , High-Throughput Screening Assays , Oxidative Stress/immunology
8.
J Proteomics ; 177: 124-136, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29337282

ABSTRACT

Osteosarcoma is an aggressive bone tumor with high metastasis rate in the lungs and affects both humans and dogs in a similar way. Three-dimensional tumor cell cultures mimic the in vivo situation of micro-tumors and metastases and are therefore better experimental in vitro models than the often applied two-dimensional monolayer cultures. The aim of the present study was to perform comparative proteomics of standard monolayer cultures of canine osteosarcoma cells (D17) and three-dimensional spheroid cultures, to better characterize the 3D model before starting with experiments like migration assays. Using DIGE in combination with MALDI-TOF/TOF we found 27 unique canine proteins differently represented between these two culture systems, most of them being part of a functional network including mainly chaperones, structural proteins, stress-related proteins, proteins of the glycolysis/gluconeogenesis pathway and oxidoreductases. In monolayer cells, a noticeable shift to more acidic pI values was noticed for several proteins of medium to high abundance; two proteins (protein disulfide isomerase A3, stress-induced-phosphoprotein 1) showed an increase of phosphorylated protein species. Protein distribution within the cells, as detected by immunohistochemistry, displayed a switch of stress-induced-phosphoprotein 1 from the cytoplasm (in monolayer cultures) to the nucleus (in spheroid cultures). Additionally, Western blot testing revealed upregulated concentrations of metastasin (S100A4), triosephosphate isomerase 1 and septin 2 in spheroid cultures, in contrast to decreased concentrations of CCT2, a subunit of the T-complex. Results indicate regulation of stress proteins in the process of three-dimensional organization characterized by a hypoxic and nutrient-deficient environment comparable to tumor micro-metastases. SIGNIFICANCE: Osteosarcoma is an aggressive bone tumor that early spreads to the lungs. Three-dimensional tumor cell cultures represent the avascular stage of micro-tumors and metastases, and should therefore represent a better experimental in vitro model compared to two-dimensional monolayer cultures. Significant differences have been reported in response to drug and radiation treatment between these two culture systems. A gel-based proteomic investigation was performed to compare protein patterns of a canine osteosarcoma cell line cultivated under those two conditions, to learn more about altered cell composition and its impact on cell behaviour. Due to the fact that the canine osteosarcoma is an accepted model for the human disease, results will be relevant for the human species as well.


Subject(s)
Osteosarcoma/pathology , Proteome/analysis , Spheroids, Cellular/chemistry , Animals , Cell Culture Techniques/methods , Cell Line, Tumor , Chaperonin Containing TCP-1/metabolism , Dogs , Humans , S100 Calcium-Binding Protein A4/metabolism , Spheroids, Cellular/cytology
9.
Int J Parasitol ; 48(2): 145-157, 2018 02.
Article in English | MEDLINE | ID: mdl-29203214

ABSTRACT

The current study focused on Histomonas meleagridis, a unicellular protozoan, responsible for histomonosis in poultry. Recently, the occurrence of the disease increased due to the ban of effective chemotherapeutic drugs. Basic questions regarding the molecular biology, virulence mechanisms or even life cycle of the flagellate are still puzzling. In order to address some of these issues, we conducted a comparative proteomic analysis of a virulent and an attenuated H. meleagridis strain traced back to a single cell and propagated in vitro as monoxenic mono-eukaryotic cultures. Using two-dimensional electrophoresis (2-DE) for proteome visualization with computational 2-DE gel image and statistical analysis, upregulated proteins in either of the two H. meleagridis strains were detected. Statistical analysis fulfilling two criteria (≥threefold upregulation and P < 0.05) revealed 119 differentially expressed protein spots out of which 62 spots were noticed in gels with proteins from the virulent and 57 spots in gels with proteins from the attenuated culture. Mass spectrometric analysis of 32 protein spots upregulated in gels of the virulent strain identified 17 as H. meleagridis-specific. The identification revealed that these spots belonged to eight different proteins, with the majority related to cellular stress management. Two ubiquitous cellular proteins, actin and enolase, were upregulated in multiple gel positions in this strain, indicating either post-translational modification or truncation, or even both. Additionally, a known virulence factor named legumain cysteine peptidase was also detected. In contrast to this, mass spectrometric analysis of 49 protein spots, upregulated in gels of the attenuated strain, singled out 32 spots as specific for the flagellate. These spots were shown to correspond to 24 different proteins that reflect the increased metabolism, in vitro adaptation of the parasite, and amoeboid morphology. In addition to H. meleagridis proteins, the analysis identified differential expression of Escherichia coli DH5α proteins that could have been influenced by the co-cultivated H. meleagridis strain, indicating a reciprocal interaction of these two organisms during monoxenic cultivation.


Subject(s)
Proteomics , Protozoan Proteins/metabolism , Trichomonadida/genetics , Trichomonadida/pathogenicity , Protozoan Proteins/genetics , Transcriptome , Trichomonadida/metabolism , Virulence
10.
BMC Vet Res ; 13(1): 375, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29202764

ABSTRACT

BACKGROUND: The influence of two different sample treatments comprising the enrichment of glycoproteins by boronic acid and dynamic range compression by hexapeptide libraries, on the detection of stress markers in saliva of pigs was evaluated in this study. For this purpose, saliva samples collected before and after the application of an acute stress model consisting of nasal restraining in pigs were processed without any treatment and with the two different treatments mentioned above. Protein separation by two-dimensional gel electrophoresis (2-DE) followed by identification of proteins using MALDI-TOF/TOF mass spectrometry (MS) was used as proteomic technique. RESULTS: The application of each of the two different sample treatment protocols allowed the identification of unique proteins that could be potential salivary acute stress markers in pigs: lipocalin 1, protein S100-A8 and immunoglobulin M by enrichment of glycoproteins; protein S100-A9, double headed protease inhibitor submandibular gland, and haemoglobin by dynamic range compression; and protein S100-A12 by both protocols. Salivary lipocalin, prolactin inducible protein, light chain of immunoglobulins, adenosine deaminase and carbonic anhydrase VI were identified as potential markers in untreated saliva as well as one of the other treatments. CONCLUSION: The use of different procedures allowed the detection of different potential stress markers. Although from a practical point of view, the use of saliva without further treatment as well as the enrichment of glycoproteins are less expensive and easy to do procedures.


Subject(s)
Proteomics/methods , Saliva/chemistry , Stress, Physiological/physiology , Swine Diseases/metabolism , Animals , Biomarkers/analysis , Electrophoresis, Gel, Two-Dimensional/veterinary , Male , Swine , Swine Diseases/diagnosis
11.
Acta Vet Scand ; 59(1): 78, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29121973

ABSTRACT

BACKGROUND: Proteases produced by many microorganisms, including oomycetes, are crucial for their growth and development. They may also play a critical role in disease manifestation. Epizootic ulcerative syndrome is one of the most destructive fish diseases known. It is caused by the oomycete Aphanomyces invadans and leads to mass mortalities of cultured and wild fish in many countries. The areas of concern are Australia, China, Japan, South and Southeast Asian countries and the USA. Extracellular proteases produced by this oomycete are believed to trigger EUS pathogenesis in fish. To address this activity, we collected the extracellular products (ECP) of A. invadans and identified the secreted proteins using SDS-PAGE and mass spectrometery. A. invadans was cultivated in liquid Glucose-Peptone-Yeats media. The culture media was ultra-filtered through 10 kDa filters and analysed using SDS-PAGE. Three prominent protein bands from the SDS gel were excised and identified by mass spectrometery. Furthermore, we assessed their proteolytic effect on casein and immunoglobulin M (IgM) of rainbow trout (Oncorhynchus mykiss) and giant gourami (Osphronemus goramy). Antiprotease activity of the fish serum was also investigated. RESULTS: BLASTp analysis revealed that the prominent secreted proteins were proteases, mainly of the serine and cysteine types. Proteins containing fascin-like domain and bromodomain were also identified. We could demonstrate that the secreted proteases showed proteolytic activity against the casein and the IgM of both fish species. The anti-protease activity experiment showed that the percent inhibition of the common carp serum was 94.2% while that of rainbow trout and giant gourami serum was 7.7 and 12.9%, respectively. CONCLUSIONS: The identified proteases, especially serine proteases, could be the potential virulence factors in A. invadans and, hence, are candidates for further functional and host-pathogen interaction studies. The role of identified structural proteins in A. invadans also needs to be investigated further.


Subject(s)
Aphanomyces/physiology , Fish Diseases/parasitology , Infections/veterinary , Animals , Caseins/metabolism , Cells, Cultured , Fish Diseases/enzymology , Fishes , Immunoglobulin M/metabolism , Infections/enzymology , Infections/parasitology , Peptide Hydrolases/metabolism , Protease Inhibitors/blood , Protease Inhibitors/metabolism , Virulence Factors/metabolism
12.
Biochem J ; 451(2): 277-88, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23398389

ABSTRACT

Entamoeba histolytica, the causative agent of amoebiasis, possesses the dithiol-containing redox proteins Trx (thioredoxin) and TrxR (Trx reductase). Both proteins were found to be covalently modified and inactivated by metronidazole, a 5-nitroimidazole drug that is commonly used to treat infections with microaerophilic protozoan parasites in humans. Currently, very little is known about enzymes and other proteins participating in the Trx-dependent redox network of the parasite that could be indirectly affected by metronidazole treatment. On the basis of the disulfide/dithiol-exchange mechanism we constructed an active-site mutant of Trx, capable of binding interacting proteins as a stable mixed disulfide intermediate to screen the target proteome of Trx in E. histolytica. By applying Trx affinity chromatography, two-dimensional gel electrophoresis and MS, peroxiredoxin and 15 further potentially redox-regulated proteins were identified. Among them, EhSat1 (E. histolytica serine acetyltransferase-1), an enzyme involved in the L-cysteine biosynthetic pathway, was selected for detailed analysis. Binding of Trx to EhSat1 was verified by Far-Western blot analysis. Trx was able to restore the activity of the oxidatively damaged EhSat1 suggesting that the TrxR/Trx system protects sensitive proteins against oxidative stress in E. histolytica. Furthermore, the activity of peroxiredoxin, which is dependent on a functioning TrxR/Trx system, was strongly reduced in metronidazole-treated parasites.


Subject(s)
Entamoeba histolytica/enzymology , Protozoan Proteins/metabolism , Serine O-Acetyltransferase/metabolism , Thioredoxins/metabolism , Antiprotozoal Agents/pharmacology , Blotting, Western , Catalytic Domain , Chromatography, Affinity , Disulfides/chemistry , Disulfides/metabolism , Electrophoresis, Gel, Two-Dimensional , Entamoeba histolytica/drug effects , Mass Spectrometry , Metronidazole/pharmacology , Mutation , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxiredoxins/metabolism , Protozoan Proteins/genetics , Serine O-Acetyltransferase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/genetics
13.
Article in English | MEDLINE | ID: mdl-24533278

ABSTRACT

Giardia lamblia (syn. duodenalis, intestinalis) is a globally occurring micro-aerophilic human parasite that causes gastrointestinal disease. Standard treatment of G. lamblia infections is based on the 5-nitroimidazole drugs metronidazole and tinidazole. In two other micro-aerophilic parasites, Entamoeba histolytica and Trichomonas vaginalis, 5-nitroimidazole drugs bind to proteins involved in the thioredoxin-mediated redox network and disrupt the redox equilibrium by inhibiting thioredoxin reductase and depleting intracellular thiol pools. The major aim of this study was to assess whether nitroimidazoles exert a similar toxic effect on G. lamblia physiology. The 5-nitroimidazoles metronidazole and tinidazole were found to bind to the same subset of proteins including thioredoxin reductase. However, in contrast to E. histolytica and T. vaginalis, none of the other proteins bound are candidates for being involved in the thioredoxin-mediated redox network. Translation elongation factor EF-1γ, an essential factor in protein synthesis, was widely degraded upon treatment with 5-nitroimidazoles. 2-Nitroimidazole (azomycin) and the 5-nitroimidazole ronidazole did not bind to any G. lamblia proteins, which is in contrast to previous findings in E. histolytica and T. vaginalis. All nitroimidazoles tested reduced intracellular thiol pools in G. lamblia, but metronidazole, also in contrast to the situation in the other two parasites, had the slightest effect. Taken together, our results suggest that nitroimidazole drugs affect G. lamblia in a fundamentally different way than E. histolytica and T. vaginalis.

SELECTION OF CITATIONS
SEARCH DETAIL
...