Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Transl Psychiatry ; 13(1): 344, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951951

ABSTRACT

The brain's default mode network has a central role in the processing of information concerning oneself. Dysfunction in this self-referential processing represents a key component of multiple mental health conditions, particularly social anxiety disorder (SAD). This case-control study aimed to clarify alterations to network dynamics present during self-appraisal in SAD participants. A total of 38 adolescents and young adults with SAD and 72 healthy control participants underwent a self-referential processing fMRI task. The task involved two primary conditions of interest: direct self-appraisal (thinking about oneself) and reflected self-appraisal (thinking about how others might think about oneself). Dynamic causal modeling and parametric empirical Bayes were then used to explore differences in the effective connectivity of the default mode network between groups. We observed connectivity differences between SAD and healthy control participants in the reflected self-appraisal but not the direct self-appraisal condition. Specifically, SAD participants exhibited greater excitatory connectivity from the posterior cingulate cortex (PCC) to medial prefrontal cortex (MPFC) and greater inhibitory connectivity from the inferior parietal lobule (IPL) to MPFC. In contrast, SAD participants exhibited reduced intrinsic connectivity in the absence of task modulation. This was illustrated by reduced excitatory connectivity from the PCC to MPFC and reduced inhibitory connectivity from the IPL to MPFC. As such, participants with SAD showed changes to afferent connections to the MPFC which occurred during both reflected self-appraisal as well as intrinsically. The presence of connectivity differences in reflected and not direct self-appraisal is consistent with the characteristic fear of negative social evaluation that is experienced by people with SAD.


Subject(s)
Phobia, Social , Young Adult , Adolescent , Humans , Phobia, Social/diagnostic imaging , Diagnostic Self Evaluation , Case-Control Studies , Bayes Theorem , Magnetic Resonance Imaging , Gyrus Cinguli , Brain/diagnostic imaging , Brain Mapping
2.
Neuroimage Clin ; 40: 103535, 2023.
Article in English | MEDLINE | ID: mdl-37984226

ABSTRACT

Major Depressive Disorder (MDD) often is a recurrent and chronic disorder. We investigated the neurocognitive underpinnings of the incremental risk for poor disease course by exploring relations between enduring depression and brain functioning during regulation of negative and positive emotions using cognitive reappraisal. We used fMRI-data from the longitudinal Netherlands Study of Depression and Anxiety acquired during an emotion regulation task in 77 individuals with MDD. Task-related brain activity was related to disease load, calculated from presence and severity of depression in the preceding nine years. Additionally, we explored task related brain-connectivity. Brain functioning in individuals with MDD was further compared to 35 controls to explore overlap between load-effects and general effects related to MDD history/presence. Disease load was not associated with changes in affect or with brain activity, but with connectivity between areas essential for processing, integrating and regulating emotional information during downregulation of negative emotions. Results did not overlap with general MDD-effects. Instead, MDD was generally associated with lower parietal activity during downregulation of negative emotions. During upregulation of positive emotions, disease load was related to connectivity between limbic regions (although driven by symptomatic state), and connectivity between frontal, insular and thalamic regions was lower in MDD (vs controls). Results suggest that previous depressive load relates to brain connectivity in relevant networks during downregulation of negative emotions. These abnormalities do not overlap with disease-general abnormalities and could foster an incremental vulnerability to recurrence or chronicity of MDD. Therefore, optimizing emotion regulation is a promising therapeutic target for improving long-term MDD course.


Subject(s)
Depressive Disorder, Major , Emotional Regulation , Humans , Depressive Disorder, Major/diagnostic imaging , Brain/diagnostic imaging , Emotions/physiology , Magnetic Resonance Imaging/methods
3.
Trials ; 24(1): 686, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37875938

ABSTRACT

BACKGROUND: Existing treatments for young people with severe depression have limited effectiveness. The aim of the Study of Ketamine for Youth Depression (SKY-D) trial is to determine whether a 4-week course of low-dose subcutaneous ketamine is an effective adjunct to treatment-as-usual in young people with major depressive disorder (MDD). METHODS: SKY-D is a double-masked, randomised controlled trial funded by the Australian Government's National Health and Medical Research Council (NHMRC). Participants aged between 16 and 25 years (inclusive) with moderate-to-severe MDD will be randomised to receive either low-dose ketamine (intervention) or midazolam (active control) via subcutaneous injection once per week for 4 weeks. The primary outcome is change in depressive symptoms on the Montgomery-Åsberg Depression Rating Scale (MADRS) after 4 weeks of treatment. Further follow-up assessment will occur at 8 and 26 weeks from treatment commencement to determine whether treatment effects are sustained and to investigate safety outcomes. DISCUSSION: Results from this trial will be important in determining whether low-dose subcutaneous ketamine is an effective treatment for young people with moderate-to-severe MDD. This will be the largest randomised trial to investigate the effects of ketamine to treat depression in young people. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry ID: ACTRN12619000683134. Registered on May 7, 2019. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377513 .


Subject(s)
Depressive Disorder, Major , Ketamine , Humans , Adolescent , Infant , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/drug therapy , Ketamine/adverse effects , Depression/therapy , Australia , Treatment Outcome , Randomized Controlled Trials as Topic
4.
Discov Ment Health ; 3(1): 6, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-37861863

ABSTRACT

Suicide is the third leading cause of death for individuals between 15 and 19 years of age. The high suicide mortality rate and limited prior success in identifying neuroimaging biomarkers indicate that it is crucial to improve the accuracy of clinical neural signatures underlying suicide risk. The current study implements machine-learning (ML) algorithms to examine structural brain alterations in adolescents that can discriminate individuals with suicide risk from typically developing (TD) adolescents at the individual level. Structural MRI data were collected from 79 adolescents who demonstrated clinical levels of suicide risk and 79 demographically matched TD adolescents. Region-specific cortical/subcortical volume (CV/SCV) was evaluated following whole-brain parcellation into 1000 cortical and 12 subcortical regions. CV/SCV parameters were used as inputs for feature selection and three ML algorithms (i.e., support vector machine [SVM], K-nearest neighbors, and ensemble) to classify adolescents at suicide risk from TD adolescents. The highest classification accuracy of 74.79% (with sensitivity = 75.90%, specificity = 74.07%, and area under the receiver operating characteristic curve = 87.18%) was obtained for CV/SCV data using the SVM classifier. Identified bilateral regions that contributed to the classification mainly included reduced CV within the frontal and temporal cortices but increased volume within the cuneus/precuneus for adolescents at suicide risk relative to TD adolescents. The current data demonstrate an unbiased region-specific ML framework to effectively assess the structural biomarkers of suicide risk. Future studies with larger sample sizes and the inclusion of clinical controls and independent validation data sets are needed to confirm our findings.

5.
World Psychiatry ; 22(3): 366-387, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37713568

ABSTRACT

Populations with common physical diseases - such as cardiovascular diseases, cancer and neurodegenerative disorders - experience substantially higher rates of major depressive disorder (MDD) than the general population. On the other hand, people living with MDD have a greater risk for many physical diseases. This high level of comorbidity is associated with worse outcomes, reduced adherence to treatment, increased mortality, and greater health care utilization and costs. Comorbidity can also result in a range of clinical challenges, such as a more complicated therapeutic alliance, issues pertaining to adaptive health behaviors, drug-drug interactions and adverse events induced by medications used for physical and mental disorders. Potential explanations for the high prevalence of the above comorbidity involve shared genetic and biological pathways. These latter include inflammation, the gut microbiome, mitochondrial function and energy metabolism, hypothalamic-pituitary-adrenal axis dysregulation, and brain structure and function. Furthermore, MDD and physical diseases have in common several antecedents related to social factors (e.g., socioeconomic status), lifestyle variables (e.g., physical activity, diet, sleep), and stressful live events (e.g., childhood trauma). Pharmacotherapies and psychotherapies are effective treatments for comorbid MDD, and the introduction of lifestyle interventions as well as collaborative care models and digital technologies provide promising strategies for improving management. This paper aims to provide a detailed overview of the epidemiology of the comorbidity of MDD and specific physical diseases, including prevalence and bidirectional risk; of shared biological pathways potentially implicated in the pathogenesis of MDD and common physical diseases; of socio-environmental factors that serve as both shared risk and protective factors; and of management of MDD and physical diseases, including prevention and treatment. We conclude with future directions and emerging research related to optimal care of people with comorbid MDD and physical diseases.

6.
Brain Behav Immun ; 113: 166-175, 2023 10.
Article in English | MEDLINE | ID: mdl-37423513

ABSTRACT

OBJECTIVE: Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS: The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS: An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS: Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.


Subject(s)
Schizophrenia , Humans , Interleukin-6 , Interleukin-8 , Magnetic Resonance Imaging , Brain/diagnostic imaging , Gray Matter , Supervised Machine Learning
7.
Hum Brain Mapp ; 44(13): 4652-4666, 2023 09.
Article in English | MEDLINE | ID: mdl-37436103

ABSTRACT

Emerging evidence suggests distinct neurobiological correlates of alcohol use disorder (AUD) between sexes, which however remain largely unexplored. This work from ENIGMA Addiction Working Group aimed to characterize the sex differences in gray matter (GM) and white matter (WM) correlates of AUD using a whole-brain, voxel-based, multi-tissue mega-analytic approach, thereby extending our recent surface-based region of interest findings on a nearly matching sample using a complementary methodological approach. T1-weighted magnetic resonance imaging (MRI) data from 653 people with AUD and 326 controls was analyzed using voxel-based morphometry. The effects of group, sex, group-by-sex, and substance use severity in AUD on brain volumes were assessed using General Linear Models. Individuals with AUD relative to controls had lower GM volume in striatal, thalamic, cerebellar, and widespread cortical clusters. Group-by-sex effects were found in cerebellar GM and WM volumes, which were more affected by AUD in females than males. Smaller group-by-sex effects were also found in frontotemporal WM tracts, which were more affected in AUD females, and in temporo-occipital and midcingulate GM volumes, which were more affected in AUD males. AUD females but not males showed a negative association between monthly drinks and precentral GM volume. Our results suggest that AUD is associated with both shared and distinct widespread effects on GM and WM volumes in females and males. This evidence advances our previous region of interest knowledge, supporting the usefulness of adopting an exploratory perspective and the need to include sex as a relevant moderator variable in AUD.


Subject(s)
Alcoholism , Humans , Female , Male , Alcoholism/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Alcohol Drinking , Magnetic Resonance Imaging/methods
8.
Am J Psychiatry ; 180(9): 685-698, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37434504

ABSTRACT

OBJECTIVE: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs), including autism (ASD) and schizophrenia. Little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, the authors investigated gross volume, vertex-level thickness, and surface maps of subcortical structures in 11 CNVs and six NPDs. METHODS: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (CNVs at 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2; age range, 6-80 years; 340 males) and 782 control subjects (age range, 6-80 years; 387 males) as well as ENIGMA summary statistics for ASD, schizophrenia, attention deficit hyperactivity disorder, obsessive-compulsive disorder, bipolar disorder, and major depression. RESULTS: All CNVs showed alterations in at least one subcortical measure. Each structure was affected by at least two CNVs, and the hippocampus and amygdala were affected by five. Shape analyses detected subregional alterations that were averaged out in volume analyses. A common latent dimension was identified, characterized by opposing effects on the hippocampus/amygdala and putamen/pallidum, across CNVs and across NPDs. Effect sizes of CNVs on subcortical volume, thickness, and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and schizophrenia. CONCLUSIONS: The findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions, as well distinct effects, with some CNVs clustering with adult-onset conditions and others with ASD. These findings provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD and why a single CNV increases the risk for a diverse set of NPDs.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Schizophrenia , Male , Adult , Humans , Child , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , DNA Copy Number Variations/genetics , Schizophrenia/genetics , Brain/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Genomics
9.
10.
Early Interv Psychiatry ; 17(5): 512-518, 2023 05.
Article in English | MEDLINE | ID: mdl-37156493

ABSTRACT

OBJECTIVE: To develop targeted treatment for young people experiencing mental illness, a better understanding of the biological, psychological, and social changes is required, particularly during the early stages of illness. To do this, large datasets need to be collected using standardized methods. A harmonized data collection protocol was tested in a youth mental health research setting to determine its acceptability and feasibility. METHOD: Eighteen participants completed the harmonization protocol, including a clinical interview, self-report measures, neurocognitive measures, and mock assessments of magnetic resonance imaging (MRI) and blood. The feasibility of the protocol was assessed by recording recruitment rates, study withdrawals, missing data, and protocol deviations. Subjective responses from participant surveys and focus groups were used to examine the acceptability of the protocol. RESULTS: Twenty-eight young people were approached, 18 consented, and four did not complete the study. Most participants reported positive subjective impressions of the protocol as a whole and showed interest in participating in the study again, if given the opportunity. Participants generally perceived the MRI and neurocognitive tasks as interesting and suggested that the assessment of clinical presentation could be shortened. CONCLUSION: Overall, the harmonized data collection protocol appeared to be feasible and generally well-accepted by participants. With a majority of participants finding the assessment of clinical presentation too long and repetitive, the authors have made suggestions to shorten the self-reports. The broader implementation of this protocol could allow researchers to create large datasets and better understand how psychopathological and neurobiological changes occur in young people with mental ill-health.


Subject(s)
Mental Disorders , Mental Health , Humans , Adolescent , Feasibility Studies , Mental Disorders/diagnostic imaging , Surveys and Questionnaires , Focus Groups
12.
JMIR Ment Health ; 10: e44812, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37213197

ABSTRACT

BACKGROUND: Low engagement rates with digital mental health interventions are a major challenge in the field. Multicomponent digital interventions aim to improve engagement by adding components such as social networks. Although social networks may be engaging, they may not be sufficient to improve clinical outcomes or lead users to engage with key therapeutic components. Therefore, we need to understand what components drive engagement with digital mental health interventions overall and what drives engagement with key therapeutic components. OBJECTIVE: Horyzons was an 18-month digital mental health intervention for young people recovering from first-episode psychosis, incorporating therapeutic content and a private social network. However, it is unclear whether use of the social network leads to subsequent use of therapeutic content or vice versa. This study aimed to determine the causal relationship between the social networking and therapeutic components of Horyzons. METHODS: Participants comprised 82 young people (16-27 years) recovering from first-episode psychosis. Multiple convergent cross mapping was used to test causality, as a secondary analysis of the Horyzons intervention. Multiple convergent cross mapping tested the direction of the relationship between each pair of social and therapeutic system usage variables on Horyzons, using longitudinal usage data. RESULTS: Results indicated that the social networking aspects of Horyzons were most engaging. Posting on the social network drove engagement with all therapeutic components (r=0.06-0.36). Reacting to social network posts drove engagement with all therapeutic components (r=0.39-0.65). Commenting on social network posts drove engagement with most therapeutic components (r=0.11-0.18). Liking social network posts drove engagement with most therapeutic components (r=0.09-0.17). However, starting a therapy pathway led to commenting on social network posts (r=0.05) and liking social network posts (r=0.06), and completing a therapy action led to commenting on social network posts (r=0.14) and liking social network posts (r=0.15). CONCLUSIONS: The online social network was a key driver of long-term engagement with the Horyzons intervention and fostered engagement with key therapeutic components and ingredients of the intervention. Online social networks can be further leveraged to engage young people with therapeutic content to ensure treatment effects are maintained and to create virtuous cycles between all intervention components to maintain engagement. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12614000009617; https://www.australianclinicaltrials.gov.au/anzctr/trial/ACTRN12614000009617.

13.
Neuroimage Clin ; 38: 103388, 2023.
Article in English | MEDLINE | ID: mdl-37031636

ABSTRACT

BACKGROUND: Previous research suggests that there may be similarities in structural brain changes seen in patients with depression and psychosis compared to healthy controls. However, there is yet no systematic review collating studies comparing structural brain changes in depression and psychosis. Establishing shared and specific neuroanatomical features could aid the investigation of underlying biological processes. AIMS: To identify structural neuroimaging similarities and differences between patients with depression and psychosis. METHOD: We searched PubMed, PsychInfo, Embase, NICE Evidence, Medline and the Cochrane Library were searched from inception to 30/06/2021 using relevant subject headings (controlled vocabularies) and search syntax. Papers were assessed for quality using the Newcastle-Ottawa Scale. RESULTS: Five-hundred and twenty papers were retrieved, seven met inclusion criteria. In narrative collation of results, grey matter volume (GMV) reductions were found in the medial frontal gyrus (MFG), hippocampus and left-sided posterior subgenual prefrontal cortex in both psychosis and depression. GMV reductions affected more brain regions in psychosis, including in the insula and thalamus. White matter volume (WMV) decline was found in both depression and psychosis. Reduced fractional anisotropy (FA) was more commonly seen in depression. CONCLUSIONS: Our results suggest potential transdiagnostic patterns of GMV and WMV reductions in areas including the MFG, hippocampus, and left-sided posterior subgenual prefrontal cortex. These could be investigated as a future biomarker of transdiagnostic signature across mental illnesses. However, due to the limited number and poor quality of studies future research in large samples and harmonised imaging data is first needed.


Subject(s)
Depression , Psychotic Disorders , Humans , Depression/diagnostic imaging , Magnetic Resonance Imaging/methods , Psychotic Disorders/diagnostic imaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Neuroimaging
14.
Neurology ; 100(20): e2103-e2113, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37015818

ABSTRACT

BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (ß = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (ß = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (ß = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004). DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets.


Subject(s)
Stroke , Humans , Aged , Cross-Sectional Studies , Stroke/complications , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging
15.
medRxiv ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36865328

ABSTRACT

Objectives: Copy number variants (CNVs) are well-known genetic pleiotropic risk factors for multiple neurodevelopmental and psychiatric disorders (NPDs) including autism (ASD) and schizophrenia (SZ). Overall, little is known about how different CNVs conferring risk for the same condition may affect subcortical brain structures and how these alterations relate to the level of disease risk conferred by CNVs. To fill this gap, we investigated gross volume, and vertex level thickness and surface maps of subcortical structures in 11 different CNVs and 6 different NPDs. Methods: Subcortical structures were characterized using harmonized ENIGMA protocols in 675 CNV carriers (at the following loci: 1q21.1, TAR, 13q12.12, 15q11.2, 16p11.2, 16p13.11, and 22q11.2) and 782 controls (Male/Female: 727/730; age-range: 6-80 years) as well as ENIGMA summary-statistics for ASD, SZ, ADHD, Obsessive-Compulsive-Disorder, Bipolar-Disorder, and Major-Depression. Results: Nine of the 11 CNVs affected volume of at least one subcortical structure. The hippocampus and amygdala were affected by five CNVs. Effect sizes of CNVs on subcortical volume, thickness and local surface area were correlated with their previously reported effect sizes on cognition and risk for ASD and SZ. Shape analyses were able to identify subregional alterations that were averaged out in volume analyses. We identified a common latent dimension - characterized by opposing effects on basal ganglia and limbic structures - across CNVs and across NPDs. Conclusion: Our findings demonstrate that subcortical alterations associated with CNVs show varying levels of similarities with those associated with neuropsychiatric conditions. We also observed distinct effects with some CNVs clustering with adult conditions while others clustered with ASD. This large cross-CNV and NPDs analysis provide insight into the long-standing questions of why CNVs at different genomic loci increase the risk for the same NPD, as well as why a single CNV increases the risk for a diverse set of NPDs.

16.
Australas Psychiatry ; 31(3): 277-281, 2023 06.
Article in English | MEDLINE | ID: mdl-36913715

ABSTRACT

OBJECTIVE: To investigate the clinical characteristics of tertiary students and non-students attending a specialist clinic for severe mood disorders. METHOD: Medical record audit of clients discharged from the Youth Mood Clinic (YMC). Data extracted included depressive symptomatology, suicidal ideation, self-harm, suicide attempt, tertiary education engagement, drop-out and deferral. RESULTS: Data from 131 clients (M age = 19.58 years, SD = 2.66) were analysed, including 46 tertiary students. Relative to non-students, at intake, tertiary students reported more severe depressive symptomatology (d = 0.43). They were more likely to experience suicidal ideation at intake (V = 0.23), and during treatment (V = 0.18). Tertiary students were also more likely to be living separately to their family of origin (V = 0.20) but were less likely to have experienced parental separation (V = 0.19). 21.73% of tertiary students dropped out or deferred study during care. CONCLUSION: In this cohort, those engaged in tertiary education experience more severe depression and more commonly experienced suicidal ideation. These young people require targeted support for their mental health while they undertake tertiary education.


Subject(s)
Depressive Disorder , Mood Disorders , Adolescent , Humans , Young Adult , Adult , Mood Disorders/epidemiology , Mood Disorders/therapy , Suicide, Attempted/psychology , Suicidal Ideation , Students/psychology , Depressive Disorder/psychology , Risk Factors , Depression/epidemiology , Depression/psychology
17.
Hum Brain Mapp ; 44(6): 2636-2653, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36799565

ABSTRACT

Metabolic illnesses (MET) are detrimental to brain integrity and are common comorbidities in patients with mental illnesses, including major depressive disorder (MDD). We quantified effects of MET on standard regional brain morphometric measures from 3D brain MRI as well as diffusion MRI in a large sample of UK BioBank participants. The pattern of regional effect sizes of MET in non-psychiatric UKBB subjects was significantly correlated with the spatial profile of regional effects reported by the largest meta-analyses in MDD but not in bipolar disorder, schizophrenia or Alzheimer's disease. We used a regional vulnerability index (RVI) for MET (RVI-MET) to measure individual's brain similarity to the expected patterns in MET in the UK Biobank sample. Subjects with MET showed a higher effect size for RVI-MET than for any of the individual brain measures. We replicated elevation of RVI-MET in a sample of MDD participants with MET versus non-MET. RVI-MET scores were significantly correlated with the volume of white matter hyperintensities, a neurological consequence of MET and age, in both groups. Higher RVI-MET in both samples was associated with obesity, tobacco smoking and frequent alcohol use but was unrelated to antidepressant use. In summary, MET effects on the brain were regionally specific and individual similarity to the pattern was more strongly associated with MET than any regional brain structural metric. Effects of MET overlapped with the reported brain differences in MDD, likely due to higher incidence of MET, smoking and alcohol use in subjects with MDD.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Metabolic Diseases , Humans , Depressive Disorder, Major/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging
19.
J Affect Disord ; 325: 93-101, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36584707

ABSTRACT

INTRODUCTION: Suicide is the second most common cause of death among young people. Structural brain alterations, rumination, and recent stressful experiences contribute to suicidal thoughts and behaviors (STBs). METHODS: Here, we employed structural equation modeling (SEM) to examine the unique and combined relationships of these risk factors with STBs in a sample of young people with major depressive disorder (MDD) from the Magnetic Resonance-Improving Mood with Psychoanalytic and Cognitive Therapies (MR-IMPACT) study (N = 67, mean age = 15.90; standard deviation ± 1.32). RESULTS: Whereas increased rumination and lower surface area of brain regions, that have been previously reported to be involved in both STBs and rumination, were associated with each other (Beta = -0.268, standard error (SE) = 0.114, Z = -2.346, p = 0.019), only increased rumination was related to greater severity of suicidal ideation (Beta = 0.281, SE = 0.132, Z = 2.134, p = 0.033). In addition, we observed that recent stress was associated with lower surface area in the suicidal ideation model without covariate only (Beta = -0.312, SE = 0.149, Z = -2.089, p = 0.037). For the attempt models, no associations were found between any of the risk factors and suicide attempts. LIMITATIONS: We emphasize that these findings from this secondary analysis are hypothesis-forming and preliminary in nature given the small sample size for SEM analyses. CONCLUSION: Our findings suggest that neither lower surface area nor recent stress are directly associated with youth suicidal ideation or attempt. However, lower surface area is related to recent stress and increased rumination, which predicted greater severity of suicidal ideation in young people with MDD.


Subject(s)
Depressive Disorder, Major , Rumination, Cognitive , Humans , Adolescent , Suicidal Ideation , Depressive Disorder, Major/psychology , Suicide, Attempted/psychology , Risk Factors
20.
Mol Psychiatry ; 28(2): 698-709, 2023 02.
Article in English | MEDLINE | ID: mdl-36380235

ABSTRACT

The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.


Subject(s)
Mental Disorders , Potassium Channels, Voltage-Gated , Adult , Adolescent , Humans , Child , Brain , Mental Disorders/genetics , Mental Disorders/pathology , Aging/genetics , Magnetic Resonance Imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...