Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 389(2): 219-228, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38453524

ABSTRACT

The benzimidazole opioids (substituted nitazenes) are highly potent µ opiod receptor (MOR) agonists with heroin- or fentanyl-like effects. These compounds have caused hospitalizations and fatal overdoses. We characterized the in vitro pharmacology and structure-activity relationships of 19 nitazenes with substitutions at three positions of the benzimidazole core. Affinities were assessed using agonist radioligand binding assays at human µ, κ, and Δ opioid receptors (MOR, KOR, and DOR, respectively) heterologously expressed in CHO cells. Notably, for MOR binding, nine substituted nitazenes had significantly higher affinities than fentanyl including N-pyrrolidino etonitazene, N-pyrrilidino isonitazene, and N-desethyl isotonitazene; 13 had subnanomolar affinities. Only metodesnitazene and flunitazene had significantly lower affinities than fentanyl. Affinities for the substituted nitazenes at KOR and DOR relative to MOR were 46- to 2580-fold and 180- to 1280-fold lower, respectively. Functional activities were assessed using [35S]GTPγS binding assays. Four nitazenes had subnanomolar potencies at MOR: N-pyrrolidino etonitazene, N-pyrrilidino isonitazene, N-pyrrilidino protonitazene and N-desethyl isotonitazene. Ten substituted nitazenes had significantly higher potencies than fentanyl. All tested nitazenes were full MOR agonists. Potencies at KOR and DOR relative to MOR were 7.3- to 7920-fold and 24- to 9400-fold lower, respectively. Thus, many of these compounds are high affinity/high potency MOR agonists with elevated potential to elicit toxicity and overdose at low doses. SIGNIFICANCE STATEMENT: Substituted nitazenes are a growing public health threat. Although the 19 nitazenes tested vary in their opioid receptor pharmacology, a number are very high affinity, high potency, and high efficacy compounds- higher than fentanyl. Their pharmacology suggests high potential for harm.


Subject(s)
Receptors, Opioid, delta , Receptors, Opioid, kappa , Cricetinae , Animals , Humans , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/metabolism , Cricetulus , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/pharmacology , Fentanyl/pharmacology , Benzimidazoles
2.
ACS Omega ; 8(24): 21736-21744, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360419

ABSTRACT

We have previously identified 5-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1H-inden-1-one (SYA0340) as a dual 5-HT1A and 5-HT7 receptor ligand, and we posited such ligands might find utility in the treatment of various CNS related illnesses including cognitive and anxiolytic impairments. However, SYA0340 has a chiral center and its enantiomers may confound the readouts for their functional characteristics. Thus, in this study, we resynthesized SYA0340, separated the enantiomers, identified the absolute configurations, and evaluated their binding affinities and functional characteristics at both the 5-HT1A and 5-HT7A receptors. The results of this study show that the (+)-SYA0340-P1 [specific rotation [α] = +18.4 (deg.mL)/(g.dm)] has a binding affinity constant, Ki = 1.73 ± 0.55 nM at 5-HT1AR and Ki = 2.20 ± 0.33 nM at 5-HT7AR and (-)-SYA0340-P2 [specific rotation [α] = -18.2 (deg.mL)/(g.dm)] has Ki = 1.06 ± 0.32 nM (5-HT1AR) and 4.7 ± 1.1 nM (5-HT7AR). Using X-ray crystallographic techniques, the absolute configuration of the P2 isomer was identified as the S-enantiomer and, therefore, the P1 isomer as the R-enantiomer. Functionally, both SYA0340-P1 (EC50 = 1.12 ± 0.41 nM; Emax = 94.6 ± 3.1%) and SYA0340-P2 (EC50 = 2.21 ± 0.59 nM; Emax = 96.8 ± 5.1%) display similar agonist properties at the 5-HT1AR while both enantiomers display antagonist properties at the 5-HT7AR with P1 (IC50 = 32.1 ± 9.2 nM) displaying over 8 times greater potency as P2 (IC50 = 277 ± 46 nM). Thus, based on the functional evaluation results, SYA0340-P1 is considered as the eutomer of the pair of enantiomers of SYA0340. It is expected that these enantiomers will serve as new pharmacological probes for the 5-HT1A and 5-HT7A receptors.

3.
J Pharmacol Exp Ther ; 385(1): 62-75, 2023 04.
Article in English | MEDLINE | ID: mdl-36669875

ABSTRACT

Novel psychoactive substances, including synthetic substituted tryptamines, represent a potential public health threat. Additionally, some substituted tryptamines are being studied under medical guidance as potential treatments of psychiatric disorders. Characterizing the basic pharmacology of substituted tryptamines will aid in understanding differences in potential for harm or therapeutic use. Using human embryonic kidney cells stably expressing 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT2C receptors (5-HT1AR, 5-HT2AR, and 5HT2CR, respectively) or the serotonin transporter (SERT), we measured affinities, potencies and efficacies of 21 substituted tryptamines. With the exception of two 4-acetoxy compounds, substituted tryptamines exhibited affinities and potencies less than one micromolar at the 5-HT2AR, the primary target for psychedelic effects. In comparison, half or more exhibited low affinities/potencies at 5-HT2CR, 5-HT1AR, and SERT. Sorting by the ratio of 5-HT2A to 5-HT2C, 5-HT1A, or SERT affinity revealed chemical determinants of selectivity. We found that although 4-substituted compounds exhibited affinities that ranged across a factor of 100, they largely exhibited high selectivity for 5-HT2ARs versus 5-HT1ARs and 5-HT2CRs. 5-substituted compounds exhibited high affinities for 5-HT1ARs, low affinities for 5-HT2CRs, and a range of affinities for 5-HT2ARs, resulting in selectivity for 5-HT2ARs versus 5-HT2CRs but not versus 5-HT1ARs. Additionally, a number of psychedelics bound to SERT, with non-ring-substituted tryptamines most consistently exhibiting binding. Interestingly, substituted tryptamines and known psychedelic standards exhibited a broad range of efficacies, which were lower as a class at 5-HT2ARs compared with 5-HT2CRs and 5-HT1ARs. Conversely, coupling efficiency/amplification ratio was highest at 5-HT2ARs in comparison with 5-HT2CRs and 5-HT1ARs. SIGNIFICANCE STATEMENT: Synthetic substituted tryptamines represent both potential public health threats and potential treatments of psychiatric disorders. The substituted tryptamines tested differed in affinities, potencies, and efficacies at 5-hydroxytryptamine (5-HT)2A, 5-HT2C, and 5HT1A receptors and the serotonin transporter (SERT). Several compounds were highly selective for and coupled very efficiently downstream of 5-HT2A versus 5-HT1A and 5-HT2C receptors, and some bound SERT. This basic pharmacology of substituted tryptamines helps us understand the pharmacologic basis of their potential for harm and as therapeutic agents.


Subject(s)
Hallucinogens , Tryptamines , Humans , Tryptamines/pharmacology , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism
4.
Neuropsychopharmacology ; 47(13): 2309-2318, 2022 12.
Article in English | MEDLINE | ID: mdl-35879349

ABSTRACT

The non-medical use of opioids has become a national crisis in the USA. Developing non-opioid pharmacotherapies for controlling this opioid epidemic is urgent. Dopamine D3 receptor (D3R) antagonists and low efficacy partial agonists have shown promising profiles in animal models of opioid use disorders (OUD). However, to date, advancement to human studies has been limited. Here we report the effects of (S)- and (R)-enantiomers of (±)-ABS01-113, structural analogs of the D3R partial agonist, (±)-VK4-40, in which the 3-OH in the linking chain is replaced by 3-F group. (S)- and (R)-ABS01-113 are identical in chemical structure but with opposite chirality. In vitro receptor binding and functional assays indicate that (S)-ABS01-113 is an efficacious (55%) and potent (EC50 = 7.6 ± 3.9 nM) D3R partial agonist, while the (R)-enantiomer is a potent D3R antagonist (IC50 = 11.4 nM). Both (S)- and (R)-ABS01-113 bind with high affinity to D3R (Ki = 0.84 ± 0.16 and 0.37 ± 0.06 nM, respectively); however, the (S)-enantiomer is more D3/D2-selective (>1000-fold). Pharmacokinetic analyses indicate that both enantiomers display excellent oral bioavailability and high brain penetration. Systemic administration of (S)- or (R)-ABS01-113 alone failed to alter open-field locomotion in male rats and mice. Interestingly, pretreatment with (S)- or (R)-ABS01-113 attenuated heroin-enhanced hyperactivity, heroin self-administration, and (heroin + cue)-induced reinstatement of drug-seeking behavior. Together, these findings reveal that both enantiomers, particularly the highly selective and efficacious D3R partial agonist (S)-ABS01-113, demonstrate promising translational potential for the treatment of OUD.


Subject(s)
Opioid-Related Disorders , Receptors, Dopamine D3 , Animals , Rats , Male , Mice , Humans , Receptors, Dopamine D3/metabolism , Heroin , Dopamine Antagonists/pharmacology , Drug-Seeking Behavior , Analgesics, Opioid/pharmacology , Dopamine Agonists/pharmacology
5.
Eur J Med Chem ; 214: 113243, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33582388

ABSTRACT

We have previously reported that dual 5-HT1A and 5-HT7 receptor ligands might find utility as treatment options for various CNS related conditions including cognitive and anxiolytic impairments. We have also more recently reported that SYA16263 has antipsychotic-like properties with an absence of catalepsy in animal models ascribed to its ability to recruit ß-arrestin to the D2 receptor. However, SYA16263 also binds with very high affinity to 5-HT1AR (Ki = 1.1 nM) and a moderate affinity at 5-HT7R (Ki = 90 nM). Thus, it was of interest to exploit its pharmacophore elements in designing new dual receptor ligands. Using SYA16263 as the lead molecule, we have conducted a limited structure-affinity relationship (SAFIR) study by modifying various structural elements in the arylalkyl moiety, resulting in the identification of a new dual 5-HT1AR and 5-HT7R ligand, 6-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1H-inden-1-one (21), which unlike SYA16263, has a sub-nanomolar (5-HT1AR, Ki = 0.74 nM) and a low nanomolar (5-HT7R, Ki = 8.4 nM) affinity for these receptors. Interestingly, 21 is a full agonist at 5-HT1AR and antagonist at the 5-HT7R, functional characteristics which point to its potential as an antidepressant agent.


Subject(s)
Piperazines/pharmacology , Pyridines/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin Antagonists/pharmacology , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Serotonin 5-HT1 Receptor Agonists/chemical synthesis , Serotonin 5-HT1 Receptor Agonists/chemistry , Serotonin Antagonists/chemical synthesis , Serotonin Antagonists/chemistry , Structure-Activity Relationship
6.
J Pharmacol Exp Ther ; 374(3): 376-391, 2020 09.
Article in English | MEDLINE | ID: mdl-32513839

ABSTRACT

Synthetic opioids, including fentanyl and its analogs, have therapeutic efficacy in analgesia and anesthesia. However, their illicit use in the United States has increased and contributed to the number one cause of death for adults 18-50 years old. Fentanyl and the heroin metabolite morphine induce respiratory depression that can be treated with the µ opioid receptor (MOR) antagonist naloxone. With higher or more rapid dosing, fentanyl, more than morphine, causes chest wall rigidity and can also induce rapid onset laryngospasm. Because non-MORs could mediate differing clinical manifestations, we examined the interactions of fentanyl and morphine at recombinant human neurotransmitter transporters, G protein-coupled receptors, and the N-methyl-D-aspartate glutamate receptor. Both drugs were agonists at MOR, κ, and δ opioid receptors. Morphine had little or no affinity at other human receptors and transporters (K i or IC50 value >100 µM). However, fentanyl had K i values of 1407 and 1100 nM at α 1A and α 1B adrenoceptor subtypes, respectively, and K i values of 1049 and 1670 nM at dopamine D4.4 and D1 receptor subtypes, respectively; it also blocked [3H]neurotransmitter uptake by the vesicular monoamine transporter 2 (IC50 = 911 nM). Pharmacokinetic models indicate that these Ki and IC50 values are pharmacologically relevant. Fentanyl had little affinity for other receptors or transporters. Thus, noradrenergic disposition at specific receptor subtypes in relevant organs may play a role in respiratory and cardiothoracic effects of fentanyl. Data suggest that less selective fentanyl receptor pharmacology could play a role in the different clinical effects of morphine compared with fentanyl, including fentanyl-induced deaths after illicit use. SIGNIFICANCE STATEMENT: The synthetic opioid fentanyl induces different clinical effects, including rapid onset muscular rigidity, vocal cord closure, and rapid death, than the heroin metabolite morphine. Our data indicate for the first time that the two drugs have very different effects at recombinant human neurotransmitter receptors and transporters that might explain those clinical differences.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Fentanyl/pharmacology , Morphine/pharmacology , Narcotic Antagonists/pharmacology , Neurotransmitter Agents/metabolism , Analgesics, Opioid/pharmacology , Animals , CHO Cells , Cell Line , Cricetulus , HEK293 Cells , Humans , Naloxone/pharmacology , Rats , Receptors, Neurotransmitter , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...