Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 407
Filter
1.
Exp Eye Res ; : 110045, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154819

ABSTRACT

The choroid, which is a highly vascularized layer between the retina and sclera, is essential for supplying oxygen and nutrients to the outer retina. Choroidal vascular dysfunction has been implicated in numerous ocular diseases, including age-related macular degeneration, central serous chorioretinopathy, polypoidal choroidal vasculopathy, and myopia. Traditionally, the in vivo assessment of choroidal blood flow relies on techniques such as laser Doppler flowmetry, laser speckle flowgraphy, pneumotonometry, laser interferometry, and ultrasonic color Doppler imaging. While the aforementioned methods have provided valuable insights into choroidal blood flow regulation, their clinical applications have been limited. Recent advancements in optical coherence tomography and optical coherence tomography angiography have expanded our understanding of the choroid, allowing detailed visualization of the larger choroidal vessels and choriocapillaris, respectively. This review provides an overview of the available techniques that can investigate the choroid and its blood flow in vivo. Future research should combine these techniques to comprehensively image the entire choroidal microcirculation and develop robust methods to quantify choroidal blood flow. The potential findings will provide a better picture of choroidal hemodynamics and its effect on ocular health and disease.

2.
Diagnostics (Basel) ; 14(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125489

ABSTRACT

BACKGROUND: In vivo confocal microscopy (IVCM) is a vital tool in studying dry eye disease (DED), providing insights into morphological changes at ocular surface unit levels. This review presents the main differences in corneal structure between aqueous-deficient dry eye disease (AD-DED) and normal eyes. METHODS: A comprehensive search of PubMed, Web of Science, Embase, and MEDLINE databases from January 2000 to December 2023 was conducted. The study selection process, as well as data selection and examination, were independently performed by two members of the review team. RESULTS: The review reveals a consistent decrease in corneal surface epithelial cell density in AD-DED cases compared to a control group, but conflicting data on basal epithelial cell density. Notably, the abnormal hyperreflectivity of keratocytes in patients with Sjogren's syndrome was recorded, and there was a significant keratocyte density in AD-DED subjects compared to evaporative DED and control groups. Studies also found a decrease in sub-basal nerve density, increased tortuosity, and the fragmentation of nerve fibers. Dendritic cell density and dendritic cell dendrites increase in AD-DED patients compared to healthy subjects. CONCLUSIONS: IVCM is a powerful tool for enhancing our understanding of the pathophysiological mechanisms underlying DED. However, the review underscores the urgent need to standardize the terminology, analysis, and units used for accurate interpretation, a crucial step in advancing our knowledge of DED.

3.
Ann N Y Acad Sci ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177491

ABSTRACT

The study aimed to evaluate the impact of compensating retinal nerve fiber layer (RNFL) thickness for demographic and anatomical factors on glaucoma detection in Chinese and Indian adults. A population-based study included 1995 healthy participants (1076 Chinese and 919 Indians) to construct a multivariable linear regression compensation model. This model was applied to 357 Chinese glaucoma patients, 357 healthy Chinese, and 357 healthy Indians using Cirrus spectral-domain optical coherence tomography (OCT). The compensated RNFL thickness considered age, refractive error, optic disc parameters, and retinal vessel density. Results showed that although the average RNFL thickness was significantly higher in Chinese participants compared to Indians, the compensation model reduced this difference to nonsignificance. Moreover, the compensation model significantly improved the area under the receiver operating characteristic curve (0.90 vs. 0.78; p<0.001), sensitivity (75% vs. 51%), and specificity (67% vs. 32%) in distinguishing Chinese glaucoma patients from healthy Indian individuals. The compensation model significantly enhanced the diagnostic accuracy of RNFL thickness in distinguishing glaucoma in the Chinese ethnic group compared to the OCT instrument's default values. These results suggest that modifying RNFL measurements based on individual characteristics can yield substantial benefits for glaucoma detection across ethnicities.

4.
Article in English | MEDLINE | ID: mdl-38878068

ABSTRACT

PURPOSE: Neurovascular coupling impairment and inner retinal layer thinning are early detectable retinal changes in diabetes, and both worsen during progression of diabetic retinopathy (DR). However, direct interactions between these features have not been investigated so far. Therefore, we aimed to analyze associations between the retinal functional hyperemic response to light stimulation and the thickness of individual neuroretinal layers in eyes with early non-proliferative DR. METHODS: Thirty patients with type 1 diabetes featuring mild (n = 15) or moderate (n = 15) non-proliferative DR and 14 healthy subjects were included in this cross-sectional study. Retinal vessel diameters were measured before and during illumination with flickering light using a dynamic vessel analyzer. Individual layer thickness in the macula was analyzed from spectral domain optical coherence tomography. RESULTS: Flicker light-induced vessel dilation was significantly reduced in patients compared to healthy controls (veins: 3.0% vs. 6.1%, p < 0.001; arteries: 1.3% vs. 5.1%, p = 0.005). Univariately, the response in retinal veins of diabetes patients correlated significantly with ganglion cell layer (GCL) thickness (r = 0.46, p = 0.010), and negatively with hemoglobin A1c (HbA1c) levels (r=-0.41, p = 0.023) and age (r=-0.38, p = 0.037), but not with baseline diameters, glucose levels, or diabetes duration. In a multiple regression model only GCL thickness (p = 0.017, ß = 0.42) and HbA1c (p = 0.045, ß=-0.35) remained significantly associated with the vascular flicker light response. CONCLUSION: The results indicate that thinner GCL and worse glycemic control both contribute to reduced retinal neurovascular coupling in patients with clinical signs of DR. Progression of neurovascular dysfunction in DR might be related to structural degeneration of the neurovascular complex in the inner retina.

5.
Nat Commun ; 15(1): 5156, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898002

ABSTRACT

Phototransduction involves changes in concentration of ions and other solutes within photoreceptors and in subretinal space, which affect osmotic pressure and the associated water flow. Corresponding expansion and contraction of cellular layers can be imaged using optoretinography (ORG), based on phase-resolved optical coherence tomography (OCT). Until now, ORG could reliably detect only photoisomerization and phototransduction in photoreceptors, primarily in cones under bright stimuli. Here, by employing a phase-restoring subpixel motion correction algorithm, which enables imaging of the nanometer-scale tissue dynamics during minute-long recordings, and unsupervised learning of spatiotemporal patterns, we discover optical signatures of the other retinal structures' response to visual stimuli. These include inner and outer segments of rod photoreceptors, retinal pigment epithelium, and subretinal space in general. The high sensitivity of our technique enables detection of the retinal responses to dim stimuli: down to 0.01% bleach level, corresponding to natural levels of scotopic illumination. We also demonstrate that with a single flash, the optoretinogram can map retinal responses across a 12° field of view, potentially replacing multifocal electroretinography. This technique expands the diagnostic capabilities and practical applicability of optoretinography, providing an alternative to electroretinography, while combining structural and functional retinal imaging in the same OCT machine.


Subject(s)
Retinal Pigment Epithelium , Retinal Rod Photoreceptor Cells , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Animals , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/metabolism , Retinal Rod Photoreceptor Cells/physiology , Retina/diagnostic imaging , Retina/physiology , Light , Photic Stimulation , Algorithms , Male
6.
Eye Vis (Lond) ; 11(1): 21, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831465

ABSTRACT

BACKGROUND: Myopia affects 1.4 billion individuals worldwide. Notably, there is increasing evidence that choroidal thickness plays an important role in myopia and risk of developing myopia-related conditions. With the advancements in artificial intelligence (AI), choroidal thickness segmentation can now be automated, offering inherent advantages such as better repeatability, reduced grader variability, and less reliance for manpower. Hence, we aimed to evaluate the agreement between AI-automated and manual segmented measurements of subfoveal choroidal thickness (SFCT) using two swept-source optical coherence tomography (OCT) systems. METHODS: Subjects aged ≥ 16 years, with myopia of ≥ 0.50 diopters in both eyes, were recruited from the Prospective Myopia Cohort Study in Singapore (PROMYSE). OCT scans were acquired using Triton DRI-OCT and PLEX Elite 9000. OCT images were segmented both automatically with an established SA-Net architecture and manually using a standard technique with adjudication by two independent graders. SFCT was subsequently determined based on the segmentation. The Bland-Altman plot and intraclass correlation coefficient (ICC) were used to evaluate the agreement. RESULTS: A total of 229 subjects (456 eyes) with mean [± standard deviation (SD)] age of 34.1 (10.4) years were included. The overall SFCT (mean ± SD) based on manual segmentation was 216.9 ± 82.7 µm with Triton DRI-OCT and 239.3 ± 84.3 µm with PLEX Elite 9000. ICC values demonstrated excellent agreement between AI-automated and manual segmented SFCT measurements (PLEX Elite 9000: ICC = 0.937, 95% CI: 0.922 to 0.949, P < 0.001; Triton DRI-OCT: ICC = 0.887, 95% CI: 0.608 to 0.950, P < 0.001). For PLEX Elite 9000, manual segmented measurements were generally thicker when compared to AI-automated segmented measurements, with a fixed bias of 6.3 µm (95% CI: 3.8 to 8.9, P < 0.001) and proportional bias of 0.120 (P < 0.001). On the other hand, manual segmented measurements were comparatively thinner than AI-automated segmented measurements for Triton DRI-OCT, with a fixed bias of - 26.7 µm (95% CI: - 29.7 to - 23.7, P < 0.001) and proportional bias of - 0.090 (P < 0.001). CONCLUSION: We observed an excellent agreement in choroidal segmentation measurements when comparing manual with AI-automated techniques, using images from two SS-OCT systems. Given its edge over manual segmentation, automated segmentation may potentially emerge as the primary method of choroidal thickness measurement in the future.

7.
NPJ Digit Med ; 7(1): 115, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704440

ABSTRACT

Spectral-domain optical coherence tomography (SDOCT) is the gold standard of imaging the eye in clinics. Penetration depth with such devices is, however, limited and visualization of the choroid, which is essential for diagnosing chorioretinal disease, remains limited. Whereas swept-source OCT (SSOCT) devices allow for visualization of the choroid these instruments are expensive and availability in praxis is limited. We present an artificial intelligence (AI)-based solution to enhance the visualization of the choroid in OCT scans and allow for quantitative measurements of choroidal metrics using generative deep learning (DL). Synthetically enhanced SDOCT B-scans with improved choroidal visibility were generated, leveraging matching images to learn deep anatomical features during the training. Using a single-center tertiary eye care institution cohort comprising a total of 362 SDOCT-SSOCT paired subjects, we trained our model with 150,784 images from 410 healthy, 192 glaucoma, and 133 diabetic retinopathy eyes. An independent external test dataset of 37,376 images from 146 eyes was deployed to assess the authenticity and quality of the synthetically enhanced SDOCT images. Experts' ability to differentiate real versus synthetic images was poor (47.5% accuracy). Measurements of choroidal thickness, area, volume, and vascularity index, from the reference SSOCT and synthetically enhanced SDOCT, showed high Pearson's correlations of 0.97 [95% CI: 0.96-0.98], 0.97 [0.95-0.98], 0.95 [0.92-0.98], and 0.87 [0.83-0.91], with intra-class correlation values of 0.99 [0.98-0.99], 0.98 [0.98-0.99], and 0.95 [0.96-0.98], 0.93 [0.91-0.95], respectively. Thus, our DL generative model successfully generated realistic enhanced SDOCT data that is indistinguishable from SSOCT images providing improved visualization of the choroid. This technology enabled accurate measurements of choroidal metrics previously limited by the imaging depth constraints of SDOCT. The findings open new possibilities for utilizing affordable SDOCT devices in studying the choroid in both healthy and pathological conditions.

8.
Br J Ophthalmol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719343

ABSTRACT

BACKGROUND/AIMS: To investigate whether compensating retinal nerve fibre layer (RNFL) thickness measurements for demographic and anatomical ocular factors can strengthen the structure-function relationship in patients with glaucoma. METHODS: 600 eyes from 412 patients with glaucoma (mean deviation of the visual field (MD VF) -6.53±5.55 dB) were included in this cross-sectional study. Participants underwent standard automated perimetry and spectral-domain optical coherence tomography imaging (Cirrus; Carl Zeiss Meditec). Compensated RNFL thickness was computed considering age, refractive error, optic disc parameters and retinal vessel density. The relationship between MD VF and RNFL thickness measurements, with or without demographic and anatomical compensation, was evaluated sectorally and focally. RESULTS: The superior arcuate sector exhibited the highest correlation between measured RNFL and MD VF, with a correlation of 0.49 (95% CI 0.37 to 0.59). Applying the compensated RNFL data increased the correlation substantially to 0.62 (95% CI 0.52 to 0.70; p<0.001). Only 61% of the VF locations showed a significant relationship (Spearman's correlation of at least 0.30) between structural and functional aspects using measured RNFL data, and this increased to 78% with compensated RNFL measurements. In the 10°-20° VF region, the slope below the breakpoint for compensated RNFL thickness demonstrated a more robust correlation (slope=1.66±0.18 µm/dB; p<0.001) than measured RNFL (slope=0.27±0.67 µm/dB; p=0.688). CONCLUSION: Compensated RNFL data improve the correlation between RNFL measurements and VF parameters. This indicates that creating structure-to-function maps that consider anatomical variances may aid in identifying localised structural and functional loss in glaucoma.

9.
Transl Vis Sci Technol ; 13(5): 9, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38743409

ABSTRACT

Purpose: To assess the diagnostic performance and structure-function association of retinal retardance (RR), a customized metric measured by a prototype polarization-sensitive optical coherence tomography (PS-OCT), across various stages of glaucoma. Methods: This cross-sectional pilot study analyzed 170 eyes from 49 healthy individuals and 68 patients with glaucoma. The patients underwent PS-OCT imaging and conventional spectral-domain optical coherence tomography (SD-OCT), as well as visual field (VF) tests. Parameters including RR and retinal nerve fiber layer thickness (RNFLT) were extracted from identical circumpapillary regions of the fundus. Glaucomatous eyes were categorized into early, moderate, or severe stages based on VF mean deviation (MD). The diagnostic performance of RR and RNFLT in discriminating glaucoma from controls was assessed using receiver operating characteristic (ROC) curves. Correlations among VF-MD, RR, and RNFLT were evaluated and compared within different groups of disease severity. Results: The diagnostic performance of both RR and RNFLT was comparable for glaucoma detection (RR AUC = 0.98, RNFLT AUC = 0.97; P = 0.553). RR showed better structure-function association with VF-MD than RNFLT (RR VF-MD = 0.68, RNFLT VF-MD = 0.58; z = 1.99; P = 0.047) in glaucoma cases, especially in severe glaucoma, where the correlation between VF-MD and RR (r = 0.73) was significantly stronger than with RNFLT (r = 0.43, z = 1.96, P = 0.050). In eyes with early and moderate glaucoma, the structure-function association was similar when using RNFLT and RR. Conclusions: RR and RNFLT have similar performance in glaucoma diagnosis. However, in patients with glaucoma especially severe glaucoma, RR showed a stronger correlation with VF test results. Further research is needed to validate RR as an indicator for severe glaucoma evaluation and to explore the benefits of using PS-OCT in clinical practice. Translational Relevance: We demonstrated that PS-OCT has the potential to evaluate the status of RNFL structural damage in eyes with severe glaucoma, which is currently challenging in clinics.


Subject(s)
Glaucoma , Nerve Fibers , Retinal Ganglion Cells , Tomography, Optical Coherence , Visual Fields , Humans , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Male , Female , Middle Aged , Nerve Fibers/pathology , Pilot Projects , Visual Fields/physiology , Glaucoma/physiopathology , Glaucoma/diagnostic imaging , Aged , Retinal Ganglion Cells/pathology , ROC Curve , Visual Field Tests/methods , Adult , Intraocular Pressure/physiology
10.
Ophthalmol Ther ; 13(6): 1453-1477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710983

ABSTRACT

INTRODUCTION: Myopia and its vision-threatening complications present a significant public health problem. This review aims to provide an updated overview of the multitude of known and emerging interventions to control myopia, including their potential effect, safety, and costs. METHODS: A systematic literature search of three databases was conducted. Interventions were grouped into four categories: environmental/behavioral (outdoor time, near work), pharmacological (e.g., atropine), optical interventions (spectacles and contact lenses), and novel approaches such as red-light (RLRL) therapies. Review articles and original articles on randomized controlled trials (RCT) were selected. RESULTS: From the initial 3224 retrieved records, 18 reviews and 41 original articles reporting results from RCTs were included. While there is more evidence supporting the efficacy of low-dose atropine and certain myopia-controlling contact lenses in slowing myopia progression, the evidence about the efficacy of the newer interventions, such as spectacle lenses (e.g., defocus incorporated multiple segments and highly aspheric lenslets) is more limited. Behavioral interventions, i.e., increased outdoor time, seem effective for preventing the onset of myopia if implemented successfully in schools and homes. While environmental interventions and spectacles are regarded as generally safe, pharmacological interventions, contact lenses, and RLRL may be associated with adverse effects. All interventions, except for behavioral change, are tied to moderate to high expenditures. CONCLUSION: Our review suggests that myopia control interventions are recommended and prescribed on the basis of accessibility and clinical practice patterns, which vary widely around the world. Clinical trials indicate short- to medium-term efficacy in reducing myopia progression for various interventions, but none have demonstrated long-term effectiveness in preventing high myopia and potential complications in adulthood. There is an unmet need for a unified consensus for strategies that balance risk and effectiveness for these methods for personalized myopia management.

11.
Sci Rep ; 14(1): 8724, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38622152

ABSTRACT

The objective of this study is to define structure-function relationships of pathological lesions related to age-related macular degeneration (AMD) using microperimetry and multimodal retinal imaging. We conducted a cross-sectional study of 87 patients with AMD (30 eyes with early and intermediate AMD and 110 eyes with advanced AMD), compared to 33 normal controls (66 eyes) recruited from a single tertiary center. All participants had enface and cross-sectional optical coherence tomography (Heidelberg HRA-2), OCT angiography, color and infra-red (IR) fundus and microperimetry (MP) (Nidek MP-3) performed. Multimodal images were graded for specific AMD pathological lesions. A custom marking tool was used to demarcate lesion boundaries on corresponding enface IR images, and subsequently superimposed onto MP color fundus photographs with retinal sensitivity points (RSP). The resulting overlay was used to correlate pathological structural changes to zonal functional changes. Mean age of patients with early/intermediate AMD, advanced AMD and controls were 73(SD = 8.2), 70.8(SD = 8), and 65.4(SD = 7.7) years respectively. Mean retinal sensitivity (MRS) of both early/intermediate (23.1 dB; SD = 5.5) and advanced AMD (18.1 dB; SD = 7.8) eyes were significantly worse than controls (27.8 dB, SD = 4.3) (p < 0.01). Advanced AMD eyes had significantly more unstable fixation (70%; SD = 63.6), larger mean fixation area (3.9 mm2; SD = 3.0), and focal fixation point further away from the fovea (0.7 mm; SD = 0.8), than controls (29%; SD = 43.9; 2.6 mm2; SD = 1.9; 0.4 mm; SD = 0.3) (p ≤ 0.01). Notably, 22 fellow eyes of AMD eyes (25.7 dB; SD = 3.0), with no AMD lesions, still had lower MRS than controls (p = 0.04). For specific AMD-related lesions, end-stage changes such as fibrosis (5.5 dB, SD = 5.4 dB) and atrophy (6.2 dB, SD = 7.0 dB) had the lowest MRS; while drusen and pigment epithelial detachment (17.7 dB, SD = 8.0 dB) had the highest MRS. Peri-lesional areas (20.2 dB, SD = 7.6 dB) and surrounding structurally normal areas (22.2 dB, SD = 6.9 dB) of the retina with no AMD lesions still had lower MRS compared to controls (27.8 dB, SD = 4.3 dB) (p < 0.01). Our detailed topographic structure-function correlation identified specific AMD pathological changes associated with a poorer visual function. This can provide an added value to the assessment of visual function to optimize treatment outcomes to existing and potentially future novel therapies.


Subject(s)
Macular Degeneration , Humans , Cross-Sectional Studies , Prospective Studies , Macular Degeneration/diagnostic imaging , Tomography, Optical Coherence , Fluorescein Angiography , Structure-Activity Relationship
12.
Materials (Basel) ; 17(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612189

ABSTRACT

With the increasing incidences of orbital wall injuries, effective reconstruction materials and techniques are imperative for optimal clinical outcomes. In this literature review, we delve into the efficacy and potential advantages of using titanium implants coated with nanostructured hydroxyapatite for the reconstruction of the orbital wall. Titanium implants, recognized for their durability and mechanical strength, when combined with the osteoconductive properties of hydroxyapatite, present a potentially synergistic solution. The purpose of this review was to critically analyze the recent literature and present the state of the art in orbital wall reconstruction using titanium implants coated with nanostructured hydroxyapatite. This review offers clinicians detailed insight into the benefits and potential drawbacks of using titanium implants coated with nanostructured hydroxyapatite for orbital wall reconstruction. The highlighted results advocate for its benefits in terms of osseointegration and provide a novel strategy for orbital reconstruction, though further studies are essential to establish long-term efficacy and address concerns.

13.
Sci Rep ; 14(1): 8395, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600099

ABSTRACT

The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.


Subject(s)
COVID-19 , Oxygen , Humans , Oxygen/metabolism , Microcirculation , Nitric Oxide , Oximetry/methods , Retinal Vessels , Perfusion , Blood Proteins , Lipids
14.
Acta Ophthalmol ; 102(6): e926-e934, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38572815

ABSTRACT

PURPOSE: To assess intra- (repeatability) and inter-observer (reproducibility) variability of laser speckle flowgraphy (LSFG) for retinal blood flow (RBF) measurement in 20 eyes of wild type (C57BL/6J) mice and effect of intravitreal Aflibercept on RBF in optic nerve head (ONH) region of 10 eyes of Ins2 (Akita) diabetic mice. METHODS: 'Mean blur rate (MBR)' was measured for all quadrants of tissue area (MT), vessel (MV) and total area (MA) of ONH region. Changes in MT were analysed at each timepoint. Repeatability was evaluated by measuring MBR variability without changing mouse head position, and reproducibility after resetting mouse head position by another operator. Coefficient of repeatability (CR) through Bland-Altman plot method coefficient of variation (COV) and Intraclass correlation coefficient (ICC) was calculated. Intravitreal Aflibercept (1 µg) was administered to Akita eyes and intraocular pressure (IOP) was measured using a tonometer at baseline, day 7, 14, 21 and 28 post-injection. Hurvich and Tsai's criterion was used. RESULTS: Coefficient of repeatability values of repeatability and reproducibility for all quadrants were within limits of agreement. Reliability was excellent (ICC 0.98-0.99) and reproducibility was moderate to excellent (ICC 0.64-0.96). There was a non-significant IOP increase in all Akita eyes at Day 28 (p > 0.05), and significant increase in MT in all quadrants at Day 21 and superior, inferior and temporal quadrants at Day 28 (p < 0.05). CONCLUSION: Laser speckle flowgraphy demonstrates excellent repeatability and moderate to excellent reproducibility in measuring RBF. Intravitreal Aflibercept injection results in a significant increase in MT up to 28 days post-injection without significant increase in IOP.


Subject(s)
Angiogenesis Inhibitors , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Intravitreal Injections , Laser-Doppler Flowmetry , Mice, Inbred C57BL , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins , Regional Blood Flow , Retinal Vessels , Vascular Endothelial Growth Factor A , Animals , Mice , Receptors, Vascular Endothelial Growth Factor/administration & dosage , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiopathology , Diabetic Retinopathy/physiopathology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/diagnosis , Recombinant Fusion Proteins/administration & dosage , Diabetes Mellitus, Experimental/physiopathology , Regional Blood Flow/physiology , Laser-Doppler Flowmetry/methods , Angiogenesis Inhibitors/administration & dosage , Reproducibility of Results , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Blood Flow Velocity/physiology , Male , Intraocular Pressure/physiology , Intraocular Pressure/drug effects , Optic Disk/blood supply
15.
Invest Ophthalmol Vis Sci ; 65(3): 20, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38470325

ABSTRACT

Purpose: The purpose of this study was to investigate rod photopigment bleaching-driven intrinsic optical signals (IOS) in the human outer retina and its measurement repeatability based on a commercial optical coherence tomography (OCT) platform. Methods: The optical path length of the rod photoreceptor subretinal space (SRS), that is, the distance between signal bands of rod outer segment tips and retinal pigment epithelium, was measured in 15 healthy subjects in ambient light and during a long-duration bleaching white-light exposure. Results: On 2 identical study days (day 1 and day 2 [D1 and D2]), light stimulation resulted in a significant decrease in rod SRS by 21.3 ± 7.6% and 19.8 ± 8.5% (both P < 0.001), respectively. The test-retest reliability of the SRS maximum change of an individual subject was moderate for single measures (intraclass correlation coefficient [ICC] = 0.730, 95% confidence interval [CI] = 0.376, 0.900, P < 0.001) and good for average measures (ICC = 0.844, 95% CI = 0.546, 0.947, P < 0.001). The mean area under the stimulus response curve with values of 14.8 ± 9.4 and 15.5 ± 7.5 µm × minutes (P = 0.782) showed excellent agreement between the stimulus response on D1 and D2. Intermittent dark adaptation of the retina led to an initial increase of the SRS by 6.1% (P = 0.018) and thereafter showed a decrease toward baseline, despite continued dark adaptation. Conclusions: The data indicate the potential of commercial OCT in measuring slow IOS in the outer retina suggesting that the rod SRS could serve as a biomarker for photoreceptor function. The presented approach could provide an easily implementable clinical tool for the early detection of diseases affecting photoreceptor health.


Subject(s)
Retina , Tomography, Optical Coherence , Humans , Reproducibility of Results , Retina/diagnostic imaging , Dark Adaptation , Rod Cell Outer Segment
16.
BMJ Open Diabetes Res Care ; 12(1)2024 01 02.
Article in English | MEDLINE | ID: mdl-38167606

ABSTRACT

INTRODUCTION: Diabetic retinopathy (DR) is a leading cause of preventable blindness among working-age adults, primarily driven by ocular microvascular complications from chronic hyperglycemia. Comprehending the complex relationship between microvascular changes in the eye and disease progression poses challenges, traditional methods assuming linear or logistical relationships may not adequately capture the intricate interactions between these changes and disease advances. Hence, the aim of this study was to evaluate the microvascular involvement of diabetes mellitus (DM) and non-proliferative DR with the implementation of non-parametric machine learning methods. RESEARCH DESIGN AND METHODS: We conducted a retrospective cohort study that included optical coherence tomography angiography (OCTA) images collected from a healthy group (196 eyes), a DM no DR group (120 eyes), a mild DR group (71 eyes), and a moderate DR group (66 eyes). We implemented a non-parametric machine learning method for four classification tasks that used parameters extracted from the OCTA images as predictors: DM no DR versus healthy, mild DR versus DM no DR, moderate DR versus mild DR, and any DR versus no DR. SHapley Additive exPlanations values were used to determine the importance of these parameters in the classification. RESULTS: We found large choriocapillaris flow deficits were the most important for healthy versus DM no DR, and became less important in eyes with mild or moderate DR. The superficial microvasculature was important for the healthy versus DM no DR and mild DR versus moderate DR tasks, but not for the DM no DR versus mild DR task-the stage when deep microvasculature plays an important role. Foveal avascular zone metric was in general less affected, but its involvement increased with worsening DR. CONCLUSIONS: The findings from this study provide valuable insights into the microvascular involvement of DM and DR, facilitating the development of early detection methods and intervention strategies.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Adult , Humans , Diabetic Retinopathy/etiology , Diabetic Retinopathy/diagnosis , Retrospective Studies , Retinal Vessels/diagnostic imaging , Tomography, Optical Coherence/methods , Microvessels
17.
Transl Vis Sci Technol ; 13(1): 5, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38197730

ABSTRACT

Purpose: We wanted to develop a deep-learning algorithm to automatically segment optic nerve head (ONH) and macula structures in three-dimensional (3D) wide-field optical coherence tomography (OCT) scans and to assess whether 3D ONH or macula structures (or a combination of both) provide the best diagnostic power for glaucoma. Methods: A cross-sectional comparative study was performed using 319 OCT scans of glaucoma eyes and 298 scans of nonglaucoma eyes. Scans were compensated to improve deep-tissue visibility. We developed a deep-learning algorithm to automatically label major tissue structures, trained with 270 manually annotated B-scans. The performance was assessed using the Dice coefficient (DC). A glaucoma classification algorithm (3D-CNN) was then designed using 500 OCT volumes and corresponding automatically segmented labels. This algorithm was trained and tested on three datasets: cropped scans of macular tissues, those of ONH tissues, and wide-field scans. The classification performance for each dataset was reported using the area under the curve (AUC). Results: Our segmentation algorithm achieved a DC of 0.94 ± 0.003. The classification algorithm was best able to diagnose glaucoma using wide-field scans, followed by ONH scans, and finally macula scans, with AUCs of 0.99 ± 0.01, 0.93 ± 0.06 and 0.91 ± 0.11, respectively. Conclusions: This study showed that wide-field OCT may allow for significantly improved glaucoma diagnosis over typical OCTs of the ONH or macula. Translational Relevance: This could lead to mainstream clinical adoption of 3D wide-field OCT scan technology.


Subject(s)
Glaucoma , Optic Disk , Humans , Optic Disk/diagnostic imaging , Artificial Intelligence , Tomography, Optical Coherence , Cross-Sectional Studies , Glaucoma/diagnostic imaging
18.
JAMA Ophthalmol ; 142(1): 15-23, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38019503

ABSTRACT

Importance: Clinical trial results of topical atropine eye drops for childhood myopia control have shown inconsistent outcomes across short-term studies, with little long-term safety or other outcomes reported. Objective: To report the long-term safety and outcomes of topical atropine for childhood myopia control. Design, Setting, and Participants: This prospective, double-masked observational study of the Atropine for the Treatment of Myopia (ATOM) 1 and ATOM2 randomized clinical trials took place at 2 single centers and included adults reviewed in 2021 through 2022 from the ATOM1 study (atropine 1% vs placebo; 1999 through 2003) and the ATOM2 study (atropine 0.01% vs 0.1% vs 0.5%; 2006 through 2012). Main Outcome Measures: Change in cycloplegic spherical equivalent (SE) with axial length (AL); incidence of ocular complications. Results: Among the original 400 participants in each original cohort, the study team evaluated 71 of 400 ATOM1 adult participants (17.8% of original cohort; study age, mean [SD] 30.5 [1.2] years; 40.6% female) and 158 of 400 ATOM2 adult participants (39.5% of original cohort; study age, mean [SD], 24.5 [1.5] years; 42.9% female) whose baseline characteristics (SE and AL) were representative of the original cohort. In this study, evaluating ATOM1 participants, the mean (SD) SE and AL were -5.20 (2.46) diopters (D), 25.87 (1.23) mm and -6.00 (1.63) D, 25.90 (1.21) mm in the 1% atropine-treated and placebo groups, respectively (difference of SE, 0.80 D; 95% CI, -0.25 to 1.85 D; P = .13; difference of AL, -0.03 mm; 95% CI, -0.65 to 0.58 mm; P = .92). In ATOM2 participants, the mean (SD) SE and AL was -6.40 (2.21) D; 26.25 (1.34) mm; -6.81 (1.92) D, 26.28 (0.99) mm; and -7.19 (2.87) D, 26.31 (1.31) mm in the 0.01%, 0.1%, and 0.5% atropine groups, respectively. There was no difference in the 20-year incidence of cataract/lens opacities, myopic macular degeneration, or parapapillary atrophy (ß/γ zone) comparing the 1% atropine-treated group vs the placebo group. Conclusions and Relevance: Among approximately one-quarter of the original participants, use of short-term topical atropine eye drops ranging from 0.01% to 1.0% for a duration of 2 to 4 years during childhood was not associated with differences in final refractive errors 10 to 20 years after treatment. There was no increased incidence of treatment or myopia-related ocular complications in the 1% atropine-treated group vs the placebo group. These findings may affect the design of future clinical trials, as further studies are required to investigate the duration and concentration of atropine for childhood myopia control.


Subject(s)
Cataract , Genetic Diseases, X-Linked , Myopia, Degenerative , Myopia , Humans , Female , Infant , Male , Atropine/administration & dosage , Prospective Studies , Ophthalmic Solutions/administration & dosage , Administration, Topical , Refraction, Ocular , Myopia, Degenerative/drug therapy
19.
Ann N Y Acad Sci ; 1531(1): 49-59, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38084081

ABSTRACT

This study aimed to examine the impact of diabetes and hypertension on retinal nerve fiber layer (RNFL) thickness components. Optical coherence tomography (OCT) measurements do not consider blood vessel contribution, which this study addressed. We hypothesized that diabetes and/or hypertension would lead to thinner RNFL versus controls due to the vascular component. OCT angiography was used to measure the RNFL in 121 controls, 50 diabetes patients, 371 hypertension patients, and 177 diabetes patients with hypertension. A novel technique separated the RNFL thickness into original (vascular component) and corrected (no vascular component) measurements. Diabetes-only (98 ± 1.7 µm; p = 0.002) and diabetes with hypertension (99 ± 0.8 µm; p = 0.001) patients had thinner original RNFL versus controls (102 ± 0.8 µm). No difference was seen between hypertension-only patients (101 ± 0.5 µm; p = 0.083) and controls. After removing the blood vessel component, diabetes/hypertension groups had thinner corrected RNFL versus controls (p = 0.024). Discrepancies in diabetes/hypertension patients were due to thicker retinal blood vessels within the RNFL thickness (p = 0.002). Our findings suggest that diabetes and/or hypertension independently contribute to neurodegenerative thinning of the RNFL, even in the absence of retinopathy. The differentiation of neuronal and vascular components in RNFL thickness measurements provided by the novel technique highlights the importance of considering vascular changes in individuals with these conditions.


Subject(s)
Diabetes Mellitus , Hypertension , Retinal Diseases , Humans , Retinal Ganglion Cells , Nerve Fibers , Hypertension/complications , Tomography, Optical Coherence/methods
20.
Sci Rep ; 13(1): 19960, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968437

ABSTRACT

Glaucoma is a slowly progressing optic neuropathy that may eventually lead to blindness. To help patients receive customized treatment, predicting how quickly the disease will progress is important. Structural assessment using optical coherence tomography (OCT) can be used to visualize glaucomatous optic nerve and retinal damage, while functional visual field (VF) tests can be used to measure the extent of vision loss. However, VF testing is patient-dependent and highly inconsistent, making it difficult to track glaucoma progression. In this work, we developed a multimodal deep learning model comprising a convolutional neural network (CNN) and a long short-term memory (LSTM) network, for glaucoma progression prediction. We used OCT images, VF values, demographic and clinical data of 86 glaucoma patients with five visits over 12 months. The proposed method was used to predict VF changes 12 months after the first visit by combining past multimodal inputs with synthesized future images generated using generative adversarial network (GAN). The patients were classified into two classes based on their VF mean deviation (MD) decline: slow progressors (< 3 dB) and fast progressors (> 3 dB). We showed that our generative model-based novel approach can achieve the best AUC of 0.83 for predicting the progression 6 months earlier. Further, the use of synthetic future images enabled the model to accurately predict the vision loss even earlier (9 months earlier) with an AUC of 0.81, compared to using only structural (AUC = 0.68) or only functional measures (AUC = 0.72). This study provides valuable insights into the potential of using synthetic follow-up OCT images for early detection of glaucoma progression.


Subject(s)
Deep Learning , Glaucoma , Humans , Visual Fields , Intraocular Pressure , Disease Progression , Glaucoma/diagnostic imaging , Visual Field Tests/methods , Blindness , Vision Disorders , Tomography, Optical Coherence/methods
SELECTION OF CITATIONS
SEARCH DETAIL