Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(8): 4294-4305, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38346113

ABSTRACT

The adsorption of cationic peptide JM21 onto different mesoporous silica nanoparticles (MSNs) from an aqueous solution was studied as a function of pH. In agreement with the literature, the highest loading degrees could be achieved at pH close to the isoelectric point of the peptide where the peptide-peptide repulsion is minimum. However, mesopore size, mesopore geometry, and surface polarity all had an influence on the peptide adsorption in terms of both affinity and maximum loading at a given pH. This adsorption behavior could largely be explained by a combination of pH-dependent electrostatic interactions and confinement effects. It is demonstrated that hydrophobic interactions enhance the degree of peptide adsorption under pH conditions where the electrostatic attraction was absent in the case of mesoporous organosilica nanoparticles (MONs). The lower surface concentration of silanol groups for MON led to a lower level of peptide adsorption under optimum pH conditions compared to all-silica particles. Finally, the study confirmed the protective role of MSNs in preserving the biological activity of JM#21 against enzymatic degradation, even for large-pore MSNs, emphasizing their potential as nanocarriers for therapeutic peptides. By integrating experimental findings with theoretical modeling, this research elucidates the complex interplay of factors that influence peptide-silica interactions, providing vital insights for optimizing peptide loading and stabilization in biomedical applications.


Subject(s)
Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Peptides/chemistry , Nanoparticles/chemistry , Porosity , Drug Carriers/chemistry
2.
Sci Rep ; 13(1): 20175, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978264

ABSTRACT

Besides the many advantages of oral drug administration, challenges like premature drug degradation and limited bioavailability in the gastro-intestinal tract (GIT) remain. A prolonged residence time in the GIT is beneficial for enhancing the therapeutic outcome when treating diseases associated with an increased intestinal clearance rate, like inflammatory bowel disease (IBD). In this study, we synthesized rod-shaped mesoporous silica nanoparticles (MSNs) functionalized with polyethylene glycol (PEG) or hyaluronic acid (HA) and investigated their bio-distribution upon oral administration in vivo. The negatively charged, non-toxic particles showed different accumulation behavior over time in healthy mice and in mice with dextran sulfate sodium (DSS)-induced intestinal inflammation. PEGylated particles were shown to accumulate in the lower intestinal tract of healthy animals, whereas inflammation promoted retention of HA-functionalized particles in this area. Overall systemic absorption was low. However, some particles were detected in organs of mice with DSS-induced colitis, especially in the case of MSN-PEG. The in vivo findings were connected to surface chemistry-related differences in particle adhesion on Caco-2/Raji and mucus-producing Caco-2/Raji/HT29 cell co-culture epithelial models in vitro. While the particle adhesion behavior in vivo was mirrored in the in vitro results, this was not the case for the resorption results, suggesting that the in vitro model does not fully reflect the erosion of the inflamed epithelial tissue. Overall, our study demonstrates the possibility to modulate accumulation and retention of MSNs in the GIT of mice with and without inflammation through surface functionalization, which has important implications for the formulation of nanoparticle-based delivery systems for oral delivery applications.


Subject(s)
Colitis , Nanoparticles , Humans , Mice , Animals , Drug Delivery Systems/methods , Caco-2 Cells , Silicon Dioxide , Colitis/chemically induced , Colitis/drug therapy , Polyethylene Glycols , Inflammation , Dextran Sulfate
3.
Biomater Sci ; 11(18): 6287-6298, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37551433

ABSTRACT

An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.


Subject(s)
Nanoparticles , Neoplasms , Protein Corona , Animals , Neoplasms/drug therapy , Nanoparticles/chemistry , Drug Carriers , Blood Proteins/chemistry , Liver/metabolism , Protein Corona/chemistry
4.
Int J STEM Educ ; 10(1): 44, 2023.
Article in English | MEDLINE | ID: mdl-37361927

ABSTRACT

Background: Representational competence is commonly considered a prerequisite for the acquisition of conceptual knowledge, yet little exploration has been undertaken into the relation between these two constructs. Using an assessment instrument of representational competence with vector fields that functions without confounding topical context, we examined its relation with N = 515 undergraduates' conceptual knowledge about electromagnetism. Results: Applying latent variable modeling, we found that students' representational competence and conceptual knowledge are related yet clearly distinguishable constructs (manifest correlation: r = .54; latent correlation: r = .71). The relation was weaker for female than for male students, which could not be explained by measurement differences between the two groups. There were several students with high representational competence and low conceptual knowledge, but only few students with low representational competence and high conceptual knowledge. Conclusions: These results support the assumption that representational competence is a prerequisite, yet insufficient condition for the acquisition of conceptual knowledge. We provide suggestions for supporting learners in building representational competence, and particularly female learners in utilizing their representational competence to build conceptual knowledge. Supplementary Information: The online version contains supplementary material available at 10.1186/s40594-023-00435-6.

5.
J Colloid Interface Sci ; 640: 961-974, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907156

ABSTRACT

Mesoporous silica nanoparticles (MSNs) have emerged as a very promising drug delivery platform. However, multi-step synthesis and surface functionalization protocols rise the hurdle for translation of this promising drug delivery platform to the clinic. Furthermore, surface functionalization aiming at enhancing the blood circulation time, typically through surface functionalization with poly(ethylene glycol) (PEG) (PEGylation), has repeatedly been shown to be detrimental for the drug loading levels that can be achieved. Here, we present results related to sequential adsorptive drug loading and adsorptive PEGylation, where the conditions can be chosen so that the drug desorption during PEGylation is minimized. At the heart of the approach is the high solubility of PEG both in water and in apolar solvents, which makes it possible to use a solvent for PEGylation in which the drug exhibits a low solubility, as demonstrated here for two model drugs, one being water soluble and the other not. Analysis of the influence of PEGylation on the extent of serum protein adsorption underline the promise of the approach, and the results also allow the adsorption mechanisms to be elaborated. Detailed analysis of the adsorption isotherms enables determination of the fractions of PEG residing on the outer particle surfaces in comparison to inside the mesopore systems, and also makes it possible to determine the PEG conformation on the outer particle surfaces. Both parameters are directly reflected in the extent of protein adsorption to the particles. Finally, the PEG coating is shown to be stable on time-scales compatible with intravenous drug administration, which is why we are convinced that the presented approach or modifications thereof will pave the way for faster translation of this drug delivery platform to the clinic.


Subject(s)
Nanoparticles , Silicon Dioxide , Adsorption , Drug Delivery Systems , Solvents , Water , Blood Proteins , Drug Carriers , Porosity
6.
Sci Adv ; 9(2): eabq3151, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36638180

ABSTRACT

Fundamental knowledge of the physical and chemical properties of biomolecules is key to understanding molecular processes in health and disease. Bulk and single-molecule analytical methods provide rich information about biomolecules but often require high concentrations and sample preparation away from physiologically relevant conditions. Here, we present the development and application of a lab-on-a-chip spray approach that combines rapid sample preparation, mixing, and deposition to integrate with a range of nanoanalytical methods in chemistry and biology, providing enhanced spectroscopic sensitivity and single-molecule spatial resolution. We demonstrate that this method enables multidimensional study of heterogeneous biomolecular systems over multiple length scales by nanoscopy and vibrational spectroscopy. We then illustrate the capabilities of this platform by capturing and analyzing the structural conformations of transient oligomeric species formed at the early stages of the self-assembly of α-synuclein, which are associated with the onset of Parkinson's disease.

7.
Proc Natl Acad Sci U S A ; 119(31): e2201014119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35905319

ABSTRACT

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family. We find two competing tendencies of organization, which appear to be controlled by distinct biological pathways. On one hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand, lattice vectors tend to point globally toward a center of symmetry. This competition results in a frustrated triangular lattice, populated with geometrically necessary defects whose density increases near the center.


Subject(s)
Cell Wall , Diatoms , Silicon Dioxide , Cell Wall/chemistry , Diatoms/chemistry , Nanostructures , Porosity
8.
Adv Healthc Mater ; 10(14): e2100453, 2021 07.
Article in English | MEDLINE | ID: mdl-34142469

ABSTRACT

Tuberculosis remains a serious global health problem causing 1.3 million deaths annually. The causative pathogen Mycobacterium tuberculosis (Mtb) has developed several mechanisms to evade the immune system and resistances to many conventional antibiotics, so that alternative treatment strategies are urgently needed. By isolation from bronchoalveolar lavage and peptide optimization, a new antimicrobial peptide named NapFab is discovered. While showing robust activity against extracellular Mtb, the activity of NapFab against intracellular bacteria is limited due to low intracellular availability. By loading NapFab onto dendritic mesoporous silica nanoparticles (DMSN) as a carrier system, cellular uptake, and consequently antimycobacterial activity against intracellular Mtb is significantly enhanced. Furthermore, using lattice light-sheet fluorescence microscopy, it can be shown that the peptide is gradually released from the DMSN inside living macrophages over time. By electron microscopy and tomography, it is demonstrated that peptide loaded DMSN are stored in vesicular structures in proximity to mycobacterial phagosomes inside the cells, but the nanoparticles are typically not in direct contact with the bacteria. Based on the combination of functional and live-cell imaging analyses, it is hypothesized that after being released from the DMSN NapFab is able to enter the bacterial phagosome and gain access to the bacilli.


Subject(s)
Mycobacterium tuberculosis , Nanoparticles , Anti-Bacterial Agents , Peptides , Silicon Dioxide
9.
J Control Release ; 326: 544-555, 2020 10 10.
Article in English | MEDLINE | ID: mdl-32687941

ABSTRACT

Oral ingestion remains as the most convenient route of administration for the application of pharmaceuticals since it is non-invasive and does not require trained personnel to administer the drugs. Despite significant progress in novel oral drug delivery platforms over the past few decades, the oral delivery of macromolecules (particularly for peptides and proteins) is one of the major challenges faced by the biopharmaceutical industry. This is even more important since a large number of biologic drugs have been available in the past decade which typically require intravenous administration. Recently, silica nanoparticles have emerged as multifunctional, biocompatible and biodegradable inorganic nanocarriers with enormous potential as an oral drug delivery platform for various therapeutics including macromolecules. Their unique structural composition facilitates the loading of large therapeutic payloads at desired loading capacities for a controlled and site-specific oral delivery. Here, we review first the physiological challenges for oral delivery of peptides and proteins. Next, we discuss silica-based functional materials for oral delivery of macromolecules and highlight their evolving role not only as an encapsulant but as a permeation enhancer as well. Lastly, we also discuss potential strategies for future translation of these novel materials to the clinic.


Subject(s)
Nanoparticles , Silicon Dioxide , Administration, Oral , Drug Carriers , Drug Delivery Systems , Porosity
10.
Nat Commun ; 11(1): 2945, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522983

ABSTRACT

The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10-20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.


Subject(s)
Nanotechnology/methods , Spectrophotometry, Infrared/methods , Biophysics , Molecular Conformation
11.
Front Plant Sci ; 11: 253, 2020.
Article in English | MEDLINE | ID: mdl-32211008

ABSTRACT

Cross-kingdom RNA interference (RNAi) is a biological process allowing plants to transfer small regulatory RNAs to invading pathogens to trigger the silencing of target virulence genes. Transient assays in cereal powdery mildews suggest that silencing of one or two effectors could lead to near loss of virulence, but evidence from stable RNAi lines is lacking. We established transient host-induced gene silencing (HIGS) in wheat, and demonstrate that targeting an essential housekeeping gene in the wheat powdery mildew pathogen (Blumeria graminis f. sp. tritici) results in significant reduction of virulence at an early stage of infection. We generated stable transgenic RNAi wheat lines encoding a HIGS construct simultaneously silencing three B.g. tritici effectors including SvrPm3 a1/f1 , a virulence factor involved in the suppression of the Pm3 powdery mildew resistance gene. We show that all targeted effectors are effectively downregulated by HIGS, resulting in reduced fungal virulence on adult wheat plants. Our findings demonstrate that stable HIGS of effector genes can lead to quantitative gain of resistance without major pleiotropic effects in wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...