Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; : e2350817, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101294

ABSTRACT

We describe initial, current, and future aspects of complement activation and inhibition in the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH). PNH is a rare but severe hematological disorder characterized by complement-mediated intravascular hemolysis resulting in anemia and severe thrombosis. Insights into the complement-mediated pathophysiology ultimately led to regulatory approval of the first-in-class complement inhibitor, eculizumab, in 2007. This anti-complement C5 therapy resulted in the stabilization of many hematologic parameters and dramatically reduced the often fatal, coagulant-resistant thrombotic events. Despite the remarkable clinical success, a substantial proportion of PNH patients experience suboptimal clinical responses during anti-C5 therapy. We describe the identification and mechanistic dissection of four unexpected processes responsible for such suboptimal clinical responses: (1) pharmacokinetic and (2) pharmacodynamic intravascular breakthrough hemolysis, (3) continuing low-level residual intravascular hemolysis, and (4) extravascular hemolysis. Novel complement therapeutics mainly targeting different complement proteins proximal in the cascade attempt to address these remaining problems. With five approved complement inhibitors in the clinic and many more being evaluated in clinical trials, PNH remains one of the complement diseases with the highest intensity of clinical research. Mechanistically unexpected breakthrough events occur not only with C5 inhibitors but also with proximal pathway inhibitors, which require further mechanistic elaboration.

2.
Blood ; 143(11): 949-951, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483408
3.
J Neurooncol ; 167(1): 89-97, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38376766

ABSTRACT

PURPOSE: Glioblastomas (GBM) with subventricular zone (SVZ) contact have previously been associated with a specific epigenetic fingerprint. We aim to validate a reported bulk methylation signature to determine SVZ contact. METHODS: Methylation array analysis was performed on IDHwt GBM patients treated at our institution. The v11b4 classifier was used to ensure the inclusion of only receptor tyrosine kinase (RTK) I, II, and mesenchymal (MES) subtypes. Methylation-based assignment (SVZM ±) was performed using hierarchical cluster analysis. Magnetic resonance imaging (MRI) (T1ce) was independently reviewed for SVZ contact by three experienced readers. RESULTS: Sixty-five of 70 samples were classified as RTK I, II, and MES. Full T1ce MRI-based rater consensus was observed in 54 cases, which were retained for further analysis. Epigenetic SVZM classification and SVZ were strongly associated (OR: 15.0, p = 0.003). Thirteen of fourteen differential CpGs were located in the previously described differentially methylated LRBA/MAB21L2 locus. SVZ + tumors were linked to shorter OS (hazard ratio (HR): 3.80, p = 0.02) than SVZM + at earlier time points (time-dependency of SVZM, p < 0.05). Considering the SVZ consensus as the ground truth, SVZM classification yields a sensitivity of 96.6%, specificity of 36.0%, positive predictive value (PPV) of 63.6%, and negative predictive value (NPV) of 90.0%. CONCLUSION: Herein, we validated the specific epigenetic signature in GBM in the vicinity of the SVZ and highlighted the importance of methylation of a part of the LRBA/MAB21L2 gene locus. Whether SVZM can replace MRI-based SVZ assignment as a prognostic and diagnostic tool will require prospective studies of large, homogeneous cohorts.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Prospective Studies , Methylation , Adaptor Proteins, Signal Transducing , Eye Proteins , Intracellular Signaling Peptides and Proteins
4.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401844

ABSTRACT

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Subject(s)
Complement Factor H , Receptors, Complement 3b , Recombinant Fusion Proteins , Humans , Complement Factor H/metabolism , Complement Factor H/genetics , Complement Factor H/chemistry , Complement Factor H/immunology , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Complement Activation/drug effects , CD55 Antigens/genetics , CD55 Antigens/metabolism , Hemolysis/drug effects , Complement Pathway, Alternative/drug effects , Complement Inactivating Agents/pharmacology , Erythrocytes/metabolism
5.
J Neuroinflammation ; 21(1): 56, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388518

ABSTRACT

Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.


Subject(s)
Gliosis , Retinal Diseases , Mice , Animals , Humans , Gliosis/metabolism , Complement Factor H/genetics , Mice, Inbred C57BL , Retina/metabolism
6.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38187730

ABSTRACT

Dorsal closure is a process that occurs during embryogenesis of Drosophila melanogaster . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, the aspect ratio of amnioserosa cells increases markedly. The standard 2-dimensional vertex model, which successfully describes tissue sheet mechanics in multiple contexts, would in this case predict that the tissue should fluidize via cell neighbor changes. Surprisingly, however, the amnioserosa remains an elastic solid with no such events. We here present a minimal extension to the vertex model that explains how the amnioserosa can achieve this unexpected behavior. We show that continuous shrinkage of the preferred cell perimeter and cell perimeter polydispersity lead to the retention of the solid state of the amnioserosa. Our model accurately captures measured cell shape and orientation changes and predicts non-monotonic junction tension that we confirm with laser ablation experiments. Significance Statement: During embryogenesis, cells in tissues can undergo significant shape changes. Many epithelial tissues fluidize, i.e. cells exchange neighbors, when the average cell aspect ratio increases above a threshold value, consistent with the standard vertex model. During dorsal closure in Drosophila melanogaster , however, the amnioserosa tissue remains solid even as the average cell aspect ratio increases well above threshold. We introduce perimeter polydispersity and allow the preferred cell perimeters, usually held fixed in vertex models, to decrease linearly with time as seen experimentally. With these extensions to the standard vertex model, we capture experimental observations quantitatively. Our results demonstrate that vertex models can describe the behavior of the amnioserosa in dorsal closure by allowing normally fixed parameters to vary with time.

7.
ArXiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38196754

ABSTRACT

Dorsal closure is a process that occurs during embryogenesis of Drosophila melanogaster. During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, the aspect ratio of amnioserosa cells increases markedly. The standard 2-dimensional vertex model, which successfully describes tissue sheet mechanics in multiple contexts, would in this case predict that the tissue should fluidize via cell neighbor changes. Surprisingly, however, the amnioserosa remains an elastic solid with no such events. We here present a minimal extension to the vertex model that explains how the amnioserosa can achieve this unexpected behavior. We show that continuous shrink-age of the preferred cell perimeter and cell perimeter polydispersity lead to the retention of the solid state of the amnioserosa. Our model accurately captures measured cell shape and orientation changes and predicts non-monotonic junction tension that we confirm with laser ablation experiments.

SELECTION OF CITATIONS
SEARCH DETAIL