Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326974

ABSTRACT

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Subject(s)
Connexin 43 , Estrogen Receptor beta , Animals , Female , Connexin 43/metabolism , Estrogen Receptor beta/metabolism , Suprachiasmatic Nucleus/physiology , Circadian Rhythm/physiology , Gap Junctions/metabolism , Connexins/metabolism , Vasoactive Intestinal Peptide/pharmacology , Vasoactive Intestinal Peptide/metabolism , Estrogens/pharmacology , Mammals/metabolism
3.
Front Cell Neurosci ; 16: 907308, 2022.
Article in English | MEDLINE | ID: mdl-35813500

ABSTRACT

Background: Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose: To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods: We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results: Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion: Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.

4.
Pflugers Arch ; 474(9): 993-1002, 2022 09.
Article in English | MEDLINE | ID: mdl-35648220

ABSTRACT

Investigating atherosclerosis and endothelial dysfunction has mainly become established in genetically modified ApoE-/- or LDL-R-/- mice transgenic models. A new AAV-PCSK9DYDY mouse model with no genetic modification has now been reported as an alternative atherosclerosis model. Here, we aimed to employ this AAV-PCSK9DY mouse model to quantify the mechanical stiffness of the endothelial surface, an accepted hallmark for endothelial dysfunction and forerunner for atherosclerosis. Ten-week-old male C57BL/6 N mice were injected with AAV-PCSK9DY (0.5, 1 or 5 × 1011 VG) or saline as controls and fed with Western diet (1.25% cholesterol) for 3 months. Total cholesterol (TC) and triglycerides (TG) were measured after 6 and 12 weeks. Aortic sections were used for atomic force microscopy (AFM) measurements or histological analysis using Oil-Red-O staining. Mechanical properties of in situ endothelial cells derived from ex vivo aorta preparations were quantified using AFM-based nanoindentation. Compared to controls, an increase in plasma TC and TG and extent of atherosclerosis was demonstrated in all groups of mice in a viral load-dependent manner. Cortical stiffness of controls was 1.305 pN/nm and increased (10%) in response to viral load (≥ 0.5 × 1011 VG) and positively correlated with the aortic plaque content and plasma TC and TG. For the first time, we show changes in the mechanical properties of the endothelial surface and thus the development of endothelial dysfunction in the AAV-PCSK9DY mouse model. Our results demonstrate that this model is highly suitable and represents a good alternative to the commonly used transgenic mouse models for studying atherosclerosis and other vascular pathologies.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Animals , Atherosclerosis/pathology , Cholesterol , Disease Models, Animal , Endothelial Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Atomic Force , Proprotein Convertase 9/genetics , Triglycerides
5.
Bio Protoc ; 11(5): e3944, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33796618

ABSTRACT

An endogenous circadian clock system enables organisms to adapt to time-of-day dependent environmental changes. In consequence, most physiological processes exhibit daily rhythms of, e.g., energy metabolism, immune function, sleep, or hormone production. Hypothalamic circadian clocks have been identified to play a particular role in coordinating many of these processes. Primary neuronal cultures are widely used as a physiologically relevant model to study molecular events within neurons. However, as circadian rhythms include dynamic molecular changes over longer timescales that vary between individual cells, longitudinal measurement methods are essential to investigate the regulation of circadian clocks of hypothalamic neurons. Here we provide a protocol for generating primary hypothalamic neuronal cultures expressing a circadian luciferase reporter. Such reporter cells can be used to longitudinally monitor cellular circadian rhythms at high temporal resolution by performing bioluminescence measurements.

6.
Elife ; 92020 07 09.
Article in English | MEDLINE | ID: mdl-32644041

ABSTRACT

Endogenous circadian clocks have evolved to anticipate 24 hr rhythms in environmental demands. Recent studies suggest that circadian rhythm disruption is a major risk factor for the development of metabolic disorders in humans. Conversely, alterations in energy state can disrupt circadian rhythms of behavior and physiology, creating a vicious circle of metabolic dysfunction. How peripheral energy state affects diurnal food intake, however, is still poorly understood. We here show that the adipokine adiponectin (ADIPOQ) regulates diurnal feeding rhythms through clocks in energy regulatory centers of the mediobasal hypothalamus (MBH). Adipoq-deficient mice show increased rest phase food intake associated with disrupted transcript rhythms of clock and appetite-regulating genes in the MBH. ADIPOQ regulates MBH clocks via AdipoR1-mediated upregulation of the core clock gene Bmal1. BMAL1, in turn, controls expression of orexigenic neuropeptide expression in the MBH. Together, these data reveal a systemic metabolic circuit to regulate central circadian clocks and energy intake.


Subject(s)
Adiponectin/metabolism , Circadian Rhythm/physiology , Eating/physiology , Feedback, Physiological , Mice/physiology , Animals , Female , Male , Mice, Knockout
7.
Auton Neurosci ; 216: 1-8, 2019 01.
Article in English | MEDLINE | ID: mdl-30598120

ABSTRACT

Hormones are major systemic regulators of homeostatic functions. Not surprisingly, most endocrine signals show some extent of variation across the day. This holds true for the three major hormonal axes of the body originating from the hypothalamus, relayed by the pituitary and terminating in the adrenal (HPA axis), the thyroid (HPT axis), and the gonads (HPG axis), respectively. The rhythmicity of endocrine axis formation has important functions for the maintenance of homeostasis and stabilizes physiological functions against external perturbations. In some cases, such as cortisol, hormonal signals are themselves implicated in circadian regulation and, thus, endocrine disruption may affect the function of the circadian clock network to alter further downstream processes.


Subject(s)
Circadian Rhythm/physiology , Endocrine System/physiology , Animals , Gonads/physiology , Humans , Hypothalamus/physiology , Pituitary-Adrenal System/physiology , Thyroid Gland/physiology
8.
Hypertension ; 55(4): 924-31, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20157051

ABSTRACT

Angiotensin II type 2 (AT(2)) receptors can be regarded as an endogenous repair system, because the AT(2) receptor is upregulated in tissue damage and mediates tissue protection. A potential therapeutic use of this system has only recently come within reach through synthesis of the first selective, orally active, nonpeptide AT(2) receptor agonist, compound 21 (C21; dissociation constant for AT(2) receptor: 0.4 nM; dissociation constant for angiotensin II type 1 receptor: >10,000 nM). This study tested AT(2) receptor stimulation with C21 as a potential future therapeutic approach for the inhibition of proinflammatory cytokines and of nuclear factor kappaB. C21 dose-dependently (1 nM to 1 micromol/L) reduced tumor necrosis factor-alpha-induced interleukin 6 levels in primary human and murine dermal fibroblasts. AT(2) receptor specificity was controlled for by inhibition with the AT(2) receptor antagonist PD123319 and by the absence of effects in AT(2) receptor-deficient cells. AT(2) receptor-coupled signaling leading to reduced interleukin 6 levels involved inhibition of nuclear factor kappaB, activation of protein phosphatases, and synthesis of epoxyeicosatrienoic acid. Inhibition of interleukin 6 promoter activity by C21 was comparable in strength to inhibition by hydrocortisone. C21 also reduced monocyte chemoattractant protein 1 and tumor necrosis factor-alpha in vitro and in bleomycin-induced toxic cutaneous inflammation in vivo. This study is the first to show the anti-inflammatory effects of direct AT(2) receptor stimulation in vitro and in vivo by the orally active, nonpeptide AT(2) receptor agonist C21. These data suggest that pharmacological AT(2) receptor stimulation may be an orally applicable future therapeutic approach in pathological settings requiring the reduction of interleukin 6 or inhibition of nuclear factor kappaB.


Subject(s)
8,11,14-Eicosatrienoic Acid/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/metabolism , Animals , Cell Nucleus/metabolism , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Female , Fibroblasts/cytology , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Sulfonamides/pharmacology , Thiophenes/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Nat Genet ; 40(5): 529-37, 2008 May.
Article in English | MEDLINE | ID: mdl-18443590

ABSTRACT

We aimed to identify genetic variants associated with heart failure by using a rat model of the human disease. We performed invasive cardiac hemodynamic measurements in F2 crosses between spontaneously hypertensive heart failure (SHHF) rats and reference strains. We combined linkage analyses with genome-wide expression profiling and identified Ephx2 as a heart failure susceptibility gene in SHHF rats. Specifically, we found that cis variation at Ephx2 segregated with heart failure and with increased transcript expression, protein expression and enzyme activity, leading to a more rapid hydrolysis of cardioprotective epoxyeicosatrienoic acids. To confirm our results, we tested the role of Ephx2 in heart failure using knockout mice. Ephx2 gene ablation protected from pressure overload-induced heart failure and cardiac arrhythmias. We further demonstrated differential regulation of EPHX2 in human heart failure, suggesting a cross-species role for Ephx2 in this complex disease.


Subject(s)
Disease Models, Animal , Epoxide Hydrolases/genetics , Genetic Predisposition to Disease , Heart Failure/genetics , Rats/genetics , Animals , Chromosome Mapping , Epoxide Hydrolases/analysis , Epoxide Hydrolases/metabolism , Gene Expression Profiling , Genetic Linkage , Heart Failure/enzymology , Heart Failure/physiopathology , Humans , Hypertension/complications , Hypertension/genetics , Mice , Mice, Knockout , Myocardium/enzymology , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Quantitative Trait Loci , Rats, Mutant Strains , Sequence Analysis, DNA , Sequence Deletion , Transcription Factor AP-1/metabolism
10.
Arch Biochem Biophys ; 472(1): 65-75, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18282462

ABSTRACT

The genome of Caenorhabditis elegans contains 75 full length cytochrome P450 (CYP) genes whose individual functions are largely unknown yet. We tested the hypothesis that some of them may be involved in the metabolism of eicosapentaenoic acid (EPA), the predominant polyunsaturated fatty acid of this nematode. Microsomes isolated from adult worms contained spectrally active CYP proteins and showed NADPH-CYP reductase (CPR) activities. They metabolized EPA and with lower activity also arachidonic acid (AA) to specific sets of regioisomeric epoxy- and omega-/(omega-1)-hydroxy-derivatives. 17(R),18(S)-epoxyeicosatetraenoic acid was produced as the main EPA metabolite with an enantiomeric purity of 72%. The epoxygenase and hydroxylase reactions were NADPH-dependent, required the functional expression of the CPR-encoding emb-8 gene, and were inhibited by 17-ODYA and PPOH, two compounds known to inactivate mammalian AA-metabolizing CYP isoforms. Multiple followed by single RNAi gene silencing experiments identified CYP-29A3 and CYP-33E2 as the major isoforms contributing to EPA metabolism in C. elegans. Liquid chromatography/mass spectrometry revealed that regioisomeric epoxy- and hydroxy-derivatives of EPA and AA are endogenous constituents of C. elegans. The endogenous EPA metabolite levels were increased by treating the worms with fenofibrate, which also induced the microsomal epoxygenase and hydroxylase activities. These results demonstrate for the first time that C. elegans shares with mammals the capacity to produce CYP-dependent eicosanoids and may thus facilitate future studies on the mechanisms of action of this important class of signaling molecules.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosapentaenoic Acid/metabolism , Animals , Tissue Distribution
11.
Biochem J ; 403(1): 109-18, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17112342

ABSTRACT

AA (arachidonic acid) hydroxylation to 20-HETE (20-hydroxyeicosatetraenoic acid) influences renal vascular and tubular function. To identify the CYP (cytochrome P450) isoforms catalysing this reaction in the mouse kidney, we analysed the substrate specificity of Cyp4a10, 4a12a, 4a12b and 4a14 and determined sex- and strain-specific expressions. All recombinant enzymes showed high lauric acid hydroxylase activities. Cyp4a12a and Cyp4a12b efficiently hydroxylated AA to 20-HETE with V(max) values of approx. 10 nmol x nmol(-1) x min(-1) and K(m) values of 20-40 microM. 20-Carboxyeicosatetraenoic acid occurred as a secondary metabolite. AA hydroxylase activities were approx. 25-75-fold lower with Cyp4a10 and not detectable with Cyp4a14. Cyp4a12a and Cyp4a12b also efficiently converted EPA (eicosapentaenoic acid) into 19/20-OH- and 17,18-epoxy-EPA. In male mice, renal microsomal AA hydroxylase activities ranged between approx. 100 (NMRI), 45-55 (FVB/N, 129 Sv/J and Balb/c) and 25 pmol x min(-1) x mg(-1) (C57BL/6). The activities correlated with differences in Cyp4a12a protein and mRNA levels. Treatment with 5alpha-dihydrotestosterone induced both 20-HETE production and Cyp4a12a expression more than 4-fold in male C57BL/6 mice. All female mice showed low AA hydroxylase activities (15-25 pmol x min(-1) x mg(-1)) and very low Cyp4a12a mRNA and protein levels, but high Cyp4a10 and Cyp4a14 expression. Renal Cyp4a12b mRNA expression was almost undetectable in both sexes of all strains. Thus Cyp4a12a is the predominant 20-HETE synthase in the mouse kidney. Cyp4a12a expression determines the sex- and strain-specific differences in 20-HETE generation and may explain sex and strain differences in the susceptibility to hypertension and target organ damage.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Hydroxyeicosatetraenoic Acids/biosynthesis , Kidney/enzymology , Animals , Base Sequence , Cloning, Molecular , Cytochrome P450 Family 4 , DNA Primers , Fatty Acids, Nonesterified/metabolism , Female , Gene Expression Regulation, Enzymologic , Isoenzymes/genetics , Male , Mice , Molecular Sequence Data , RNA/genetics , RNA/isolation & purification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL