Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 59(7): 1723-1742, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326974

ABSTRACT

The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERß (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERß-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.


Subject(s)
Connexin 43 , Estrogen Receptor beta , Animals , Female , Connexin 43/metabolism , Estrogen Receptor beta/metabolism , Suprachiasmatic Nucleus/physiology , Circadian Rhythm/physiology , Gap Junctions/metabolism , Connexins/metabolism , Vasoactive Intestinal Peptide/pharmacology , Vasoactive Intestinal Peptide/metabolism , Estrogens/pharmacology , Mammals/metabolism
2.
Front Cell Neurosci ; 16: 907308, 2022.
Article in English | MEDLINE | ID: mdl-35813500

ABSTRACT

Background: Most mammalian cells harbor molecular circadian clocks that synchronize physiological functions with the 24-h day-night cycle. Disruption of circadian rhythms, through genetic or environmental changes, promotes the development of disorders like obesity, cardiovascular diseases, and cancer. At the cellular level, circadian, mitotic, and redox cycles are functionally coupled. Evernic (EA) and usnic acid (UA), two lichen secondary metabolites, show various pharmacological activities including anti-oxidative, anti-inflammatory, and neuroprotective action. All these effects have likewise been associated with a functional circadian clock. Hypothesis/Purpose: To test, if the lichen compounds EA and UA modulate circadian clock function at the cellular level. Methods: We used three different cell lines and two circadian luminescence reporter systems for evaluating dose- and time-dependent effects of EA/UA treatment on cellular clock regulation at high temporal resolution. Output parameters studied were circadian luminescence rhythm period, amplitude, phase, and dampening rate. Results: Both compounds had marked effects on clock rhythm amplitudes and dampening independent of cell type, with UA generally showing a higher efficiency than EA. Only in fibroblast cells, significant effects on clock period were observed for UA treated cells showing shorter and EA treated cells showing longer period lengths. Transient treatment of mouse embryonic fibroblasts at different phases had only minor clock resetting effects for both compounds. Conclusion: Secondary metabolites of lichen alter cellular circadian clocks through amplitude reduction and increased rhythm dampening.

3.
Auton Neurosci ; 216: 1-8, 2019 01.
Article in English | MEDLINE | ID: mdl-30598120

ABSTRACT

Hormones are major systemic regulators of homeostatic functions. Not surprisingly, most endocrine signals show some extent of variation across the day. This holds true for the three major hormonal axes of the body originating from the hypothalamus, relayed by the pituitary and terminating in the adrenal (HPA axis), the thyroid (HPT axis), and the gonads (HPG axis), respectively. The rhythmicity of endocrine axis formation has important functions for the maintenance of homeostasis and stabilizes physiological functions against external perturbations. In some cases, such as cortisol, hormonal signals are themselves implicated in circadian regulation and, thus, endocrine disruption may affect the function of the circadian clock network to alter further downstream processes.


Subject(s)
Circadian Rhythm/physiology , Endocrine System/physiology , Animals , Gonads/physiology , Humans , Hypothalamus/physiology , Pituitary-Adrenal System/physiology , Thyroid Gland/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...