Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 112(2): 524-9, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548162

ABSTRACT

Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is an essential regulator of T-cell responses, and its absence precipitates lethal T-cell hyperactivity. However, whether CTLA-4 acts simply to veto the activation of certain clones or plays a more nuanced role in shaping the quality of T-cell responses is not clear. Here we report that T cells in CTLA-4-deficient mice show spontaneous T-follicular helper (T(FH)) differentiation in vivo, and this is accompanied by the appearance of large germinal centers (GCs). Remarkably, short-term blockade with anti-CTLA-4 antibody in wild-type mice is sufficient to elicit T(FH) generation and GC development. The latter occurs in a CD28-dependent manner, consistent with the known role of CTLA-4 in regulating the CD28 pathway. CTLA-4 can act by down-regulating CD80 and CD86 on antigen presenting cells (APCs), thereby altering the level of CD28 engagement. To mimic reduced CD28 ligation, we used mice heterozygous for CD28, revealing that the magnitude of CD28 engagement is tightly linked to the propensity for T(FH) differentiation. In contrast, other parameters of T-cell activation, including CD62L down-regulation and Ki67 expression, were relatively insensitive to altered CD28 level. Altered T(FH) generation as a result of graded reduction in CD28 was associated with decreased numbers of GC B cells and a reduction in overall GC size. These data support a model in which CTLA-4 control of immunity goes beyond vetoing T-cell priming and encompasses the regulation of T(FH) differentiation by graded control of CD28 engagement.


Subject(s)
CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , Adaptive Immunity , Animals , Autoantibodies/biosynthesis , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CD28 Antigens/deficiency , CD28 Antigens/genetics , CTLA-4 Antigen/deficiency , CTLA-4 Antigen/genetics , Cell Differentiation/immunology , Germinal Center/cytology , Germinal Center/immunology , Heterozygote , Ligands , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Immunological
2.
Eur J Immunol ; 44(10): 2968-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042153

ABSTRACT

Treg-cell function is compromised in rheumatoid arthritis (RA). As the master regulator of Treg cells, FOXP3 controls development and suppressive function. Stable Treg-cell FOXP3 expression is epigenetically regulated; constitutive expression requires a demethylated Treg-specific demethylated region. Here, we hypothesised that methylation of the FOXP3 locus is altered in Treg cells of established RA patients. Methylation analysis of key regulatory regions in the FOXP3 locus was performed on Treg cells from RA patients and healthy controls. The FOXP3 Treg-specific demethylated region and proximal promoter displayed comparable methylation profiles in RA and healthy-donor Treg cells. We identified a novel differentially methylated region (DMR) upstream of the FOXP3 promoter, with enhancer activity sensitive to methylation-induced silencing. In RA Treg cells we observed significantly reduced DMR methylation and lower DNA methyltransferase (DNMT1/3A) expression compared with healthy Treg cells. Furthermore, DMR methylation negatively correlated with FOXP3 mRNA expression, and Treg cells isolated from rheumatoid factor negative RA patients were found to express significantly higher levels of FOXP3 than Treg cells from RhF-positive patients, with an associated decrease in DMR methylation. In conclusion, the novel DMR is involved in the regulation of Treg-cell FOXP3 expression, but this regulation is lost post-transcriptionally in RA Treg cells.


Subject(s)
Arthritis, Rheumatoid/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Arthritis, Rheumatoid/genetics , DNA Methylation/genetics , DNA Methylation/immunology , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction
4.
Cell Signal ; 26(4): 683-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24378531

ABSTRACT

Tumour necrosis factor (p55 or p60) receptor (TNFR) 1 is the major receptor that activates pro-inflammatory signalling and induces gene expression in response to TNF. Consensus is lacking for the function of (p75 or p80) TNFR2 but experiments in mice have suggested neuro-, cardio- and osteo-protective and anti-inflammatory roles. It has been shown in various cell types to be specifically required for the induction of TNFR-associated factor-2 (TRAF2) degradation and activation of the alternative nuclear factor (NF)-kappaB pathway, and to contribute to the activation of mitogen-activated protein kinases (MAPK) and the classical NF-kappaB pathway. We have investigated the signalling functions of TNFR2 in primary human and murine macrophages. We find that in these cells TNF induces TRAF2 degradation, and this is blocked in TNFR2(-/-) macrophages. TRAF2 has been previously reported to be required for TNF-induced activation of p38 MAPK. However, TRAF2 degradation does not inhibit TNF-induced tolerance of p38 MAPK activation. Neither TNF, nor lipopolysaccharide treatment, induced activation of the alternative NF-kappaB pathway in macrophages. Activation by TNF of the p38 MAPK and NF-kappaB pathways was blocked in TNFR1(-/-) macrophages. In contrast, although TNFR2(-/-) macrophages displayed robust p38 MAPK activation and IkappaBα degradation at high concentrations of TNF, at lower doses the concentration dependence of signalling was weakened by an order of magnitude. Our results suggest that, in addition to inducing TRAF2 protein degradation, TNFR2 also plays a crucial auxiliary role to TNFR1 in sensitising macrophages for the ligand-induced activation of the p38 MAPK and classical NF-kappaB pro-inflammatory signalling pathways.


Subject(s)
Macrophages/metabolism , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , TNF Receptor-Associated Factor 2/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cells, Cultured , Enzyme Activation/drug effects , Humans , I-kappa B Proteins/metabolism , Ligands , Lipopolysaccharides/pharmacology , Macrophages/cytology , Mice , NF-KappaB Inhibitor alpha , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
5.
Arthritis Rheum ; 65(9): 2262-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23784528

ABSTRACT

OBJECTIVE: To determine whether selective blockade of tumor necrosis factor receptor I (TNFRI) affects spontaneous proinflammatory cytokine and chemokine production in ex vivo-cultured human rheumatoid arthritis synovial membrane mononuclear cells (MNCs) and to compare this response to that of TNF ligand blockade using etanercept. METHODS: A bispecific, single variable-domain antibody (anti-TNFRI moiety plus an albumin binding moiety [TNFRI-AlbudAb]) was used to selectively block TNFRI. Inhibition of TNFα-mediated responses in cell lines expressing TNFRI/II confirmed TNFRI-AlbudAb potency, human rhabdomyosarcoma cell line KYM-1D4 cytotoxicity, and human umbilical vein endothelial cell (HUVEC) vascular cell adhesion molecule 1 (VCAM-1) upregulation. Eighteen RA synovial membrane MNC suspensions were cultured for 2 days or 5 days, either alone or in the presence of TNFRI-AlbudAb, control-AlbudAb, or etanercept. Proinflammatory cytokines and chemokines in culture supernatants were measured by enzyme-linked immunosorbent assays. A mixed-effects statistical analysis model was used to assess the extent of TNFRI selective blockade, where the results were expressed as the percentage change with 95% confidence intervals (95% CIs). RESULTS: TNFRI-AlbudAb inhibited TNFα-induced KYM-1D4 cell cytotoxicity (50% inhibition concentration [IC50 ] 4 nM) and HUVEC VCAM-1 up-regulation (IC50 12 nM) in a dose-dependent manner. In ex vivo-cultured RA synovial membrane MNCs, selective blockade of TNFRI inhibited the production of proinflammatory cytokines and chemokines to levels similar to those obtained with TNF ligand blockade, without inducing cellular toxicity. Changes in cytokine levels were as follows: -23.5% (95% CI -12.4, -33.2 [P = 0.004]) for granulocyte-macrophage colony-stimulating factor, -33.4% (95% CI -20.6, -44.2 [P ≤ 0.0001]) for interleukin-10 (IL-10), -17.6% (95% CI 3.2, -34.2 [P = 0.0880]) for IL-1ß, and -19.0% (95% CI -3.4, -32.1 [P = 0.0207]) for IL-6. Changes in chemokine levels were as follows: -34.2% (-14.4, -49.4 [P = 0.0030]) for IL-8, -56.6% (-30.7, -72.9 [P = 0.0011]) for RANTES, and -24.9% (2, -44.8 [P = 0.0656]) for monocyte chemotactic protein 1. CONCLUSION: In ex vivo-cultured RA synovial membrane MNCs, although a limited role of TNFRII cannot be ruled out, TNFRI signaling was found to be the dominant pathway leading to proinflammatory cytokine and chemokine production. Thus, selective blockade of TNFRI could potentially be therapeutically beneficial over TNF ligand blockade by retaining the beneficial TNFRII signaling.


Subject(s)
Arthritis, Rheumatoid/metabolism , Chemokines/biosynthesis , Cytokines/biosynthesis , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Synovial Membrane/drug effects , Adult , Aged , Antirheumatic Agents/pharmacology , Arthritis, Rheumatoid/pathology , Cell Line, Tumor , Cells, Cultured , Etanercept , Female , Humans , Immunoglobulin G/pharmacology , Inflammation/metabolism , Inflammation/pathology , Male , Middle Aged , Receptors, Tumor Necrosis Factor/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Up-Regulation/drug effects
6.
J Immunol ; 189(3): 1118-22, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22753931

ABSTRACT

The CTLA-4 pathway is a key regulator of T cell activation and a critical failsafe against autoimmunity. Although early models postulated that CTLA-4 transduced a negative signal, in vivo evidence suggests that CTLA-4 functions in a cell-extrinsic manner. That multiple cell-intrinsic mechanisms have been attributed to CTLA-4, yet its function in vivo appears to be cell-extrinsic, has been an ongoing paradox in the field. Although CTLA-4 expressed on conventional T cells (Tconv) can mediate inhibitory function, it is unclear why this fails to manifest as an intrinsic effect. In this study, we show that Tconv-expressed CTLA-4 can function in a cell-extrinsic manner in vivo. CTLA-4(+/+) T cells, from DO11/rag(-/-) mice that lack regulatory T cells, were able to regulate the response of CTLA-4(-/-) T cells in cotransfer experiments. This observation provides a potential resolution to the above paradox and suggests CTLA-4 function on both Tconv and regulatory T cells can be achieved through cell-extrinsic mechanisms.


Subject(s)
CTLA-4 Antigen/physiology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adoptive Transfer , Animals , Bone Marrow Transplantation/immunology , CTLA-4 Antigen/deficiency , CTLA-4 Antigen/genetics , Growth Inhibitors/deficiency , Growth Inhibitors/genetics , Growth Inhibitors/physiology , Immune Tolerance/genetics , Immunity, Cellular/genetics , Mice , Mice, Knockout , Mice, Transgenic , Radiation Chimera/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
7.
Diabetes Metab Res Rev ; 27(8): 946-50, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22069290

ABSTRACT

BACKGROUND: The importance of cytotoxic T lymphocyte antigen-4 (CTLA-4) in immune regulation is unquestioned, yet a precise understanding of which cells express it, and how it mediates immune inhibitory function, is lacking. Regulatory T cells are known to constitutively express CTLA-4 intracellularly, whereas conventional T cells require activation to trigger CTLA-4 expression. However comparative analysis of CTLA-4 trafficking in regulatory and conventional subsets has not been performed. METHODS: Here we assess CTLA-4 expression in antigen-specific conventional and regulatory cells responding to immunizing antigen in vivo and analyse the membrane trafficking of CTLA-4 using an in vitro recycling assay. We assess the expression of CTLA-4 on Treg infiltrating the pancreas in the DO11×RIP-mOVA diabetes model and the role of CTLA-4 in Treg function. RESULTS: Regulatory T cells show an enhanced capacity to traffic CTLA-4 following stimulation compared with conventional T cells. Treg infiltrating the pancreas in DO11×RIP-mOVA mice show high expression of CTLA-4. Furthermore CTLA-4-deficient Treg fail to control diabetes in an adoptive transfer model of diabetes, even in situations where they outnumber the disease-inducing conventional T cells. CONCLUSIONS: These data show that not only do regulatory T cells express higher levels of intracellular CTLA-4 than conventional T cells, but they also show an increased capacity to traffic CTLA-4 to the cell surface following stimulation. CTLA-4 is strongly upregulated in regulatory T cells infiltrating the target tissue in a mouse model of type 1 diabetes and expression of this protein is critical for effective regulation.


Subject(s)
CTLA-4 Antigen/physiology , Diabetes Mellitus, Type 1/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CTLA-4 Antigen/biosynthesis , Disease Models, Animal , Lymphocyte Activation/immunology , Mice , Mice, Transgenic , Protein Transport , T-Lymphocytes/immunology , Up-Regulation
8.
Science ; 332(6029): 600-3, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21474713

ABSTRACT

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4-expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28-CTLA-4 system.


Subject(s)
Antigens, CD/immunology , B7-1 Antigen/immunology , B7-2 Antigen/immunology , CD28 Antigens/immunology , Endocytosis , T-Lymphocyte Subsets/immunology , Animals , Antigens, CD/metabolism , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , CHO Cells , CTLA-4 Antigen , Cricetinae , Cricetulus , Dendritic Cells/immunology , Humans , Jurkat Cells , Ligands , Lymphocyte Activation , Mice , Mice, Transgenic , Models, Biological , Ovalbumin/immunology , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
9.
J Immunol ; 185(5): 2800-7, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20675587

ABSTRACT

The entry of autoreactive T cells into the pancreas is a critical checkpoint in the development of autoimmune diabetes. In this study, we identify a role for B1 cells in this process using the DO11 x RIP-mOVA mouse model. In transgenic mice with islet-specific T cells, but no B cells, T cells are primed in the pancreatic lymph node but fail to enter the pancreas. Reconstitution of the B1 cell population by adoptive transfer permits extensive T cell pancreas infiltration. Reconstituted B1 cells traffic to the pancreas and modify expression of adhesion molecules on pancreatic vasculature, notably VCAM-1. Despite substantial pancreas infiltration, islet destruction is minimal unless regulatory T cells are depleted. These data identify a role for B1 cells in permitting circulating islet-specific T cells to access their Ag-bearing tissue and emphasize the existence of multiple checkpoints to regulate autoimmune disease.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Movement/immunology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Adoptive Transfer , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , B-Lymphocyte Subsets/transplantation , CD8-Positive T-Lymphocytes/transplantation , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Lymphocyte Depletion , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Ovalbumin/genetics , Ovalbumin/immunology , Rats , Vascular Cell Adhesion Molecule-1/physiology
10.
J Immunol ; 182(1): 274-82, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19109158

ABSTRACT

The CTLA-4 pathway is recognized as a major immune inhibitory axis and is a key therapeutic target for augmenting antitumor immunity or curbing autoimmunity. CTLA-4-deficient mice provide the archetypal example of dysregulated immune homeostasis, developing lethal lymphoproliferation with multiorgan inflammation. In this study, we show that surprisingly these mice have an enlarged population of Foxp3(+) regulatory T cells (Treg). The increase in Treg is associated with normal thymic output but enhanced proliferation of Foxp3(+) cells in the periphery. We confirmed the effect of CTLA-4 deficiency on the Treg population using OVA-specific Treg which develop normally in the absence of CTLA-4, but show increased proliferation in response to peripheral self-Ag. Functional analysis revealed that Ag-specific Treg lacking CTLA-4 were unable to regulate disease in an adoptive transfer model of diabetes. Collectively, these data suggest that the proliferation of Treg in the periphery is tuned by CTLA-4 signals and that Treg expression of CTLA-4 is required for regulation of pancreas autoimmunity.


Subject(s)
Antigens, CD/physiology , Diabetes Mellitus, Type 1/immunology , Homeostasis/immunology , Immunosuppressive Agents , Islets of Langerhans/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Autoimmune Diseases/prevention & control , CTLA-4 Antigen , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Proliferation , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Homeostasis/genetics , Immunosuppressive Agents/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/mortality , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Receptors, Antigen, T-Cell/biosynthesis , Receptors, Antigen, T-Cell/genetics , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/pathology
11.
J Immunol ; 180(8): 5393-401, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18390721

ABSTRACT

The activity of regulatory T cells (Treg) is widely accepted to play a central role in preventing pathogenic immune responses against self-Ags. However, it is not clear why such regulation breaks down during the onset of autoimmunity. We have studied self-Ag-specific Treg during the induction of spontaneous diabetes. Our data reveal a shift in the balance between regulatory and pathogenic islet-reactive T cells in the pancreas-draining lymph nodes during disease onset. Treg function was not compromised during disease initiation, but instead conventional T cells showed reduced susceptibility to Treg-mediated suppression. Release from Treg suppression was associated with elevated levels of IL-21 in vivo, and provision of this cytokine abrogated Treg suppression in vitro and in vivo. These data suggest that immunological protection of a peripheral tissue by Treg can be subverted by IL-21, suggesting new strategies for intervention in autoimmunity.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1/immunology , Interleukins/metabolism , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Blood Glucose/analysis , Disease Progression , Immune Tolerance , Interleukins/immunology , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Mice, Mutant Strains , Mice, Transgenic , Ovalbumin/immunology , Pancreas/immunology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...