Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38586060

ABSTRACT

G protein coupled receptors (GPCRs) exhibit varying degrees of selectivity for different G protein isoforms. Despite the abundant structures of GPCR-G protein complexes, little is known about the mechanism of G protein coupling specificity. The ß2-adrenergic receptor is an example of GPCR with high selectivity for Gαs, the stimulatory G protein for adenylyl cyclase, and much weaker for the Gαi family of G proteins inhibiting adenylyl cyclase. By developing a new Gαi-biased agonist (LM189), we provide structural and biophysical evidence supporting that distinct conformations at ICL2 and TM6 are required for coupling of the different G protein subtypes Gαs and Gαi. These results deepen our understanding of G protein specificity and bias and can accelerate the design of ligands that select for preferred signaling pathways.

2.
Chemistry ; 29(1): e202202565, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36193681

ABSTRACT

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Ligands targeting the IABS, so-called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co-crystal structures that laid the foundation for the structure-based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field. Herein, we discuss recent approaches that leverage cellular target engagement studies for the IABS and thus play a critical role in the evaluation of IABS-targeted ligands as potential therapeutic agents.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Allosteric Site , Receptors, G-Protein-Coupled/metabolism , Ligands , Allosteric Regulation
3.
Science ; 377(6614): eabn7065, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36173843

ABSTRACT

Because nonopioid analgesics are much sought after, we computationally docked more than 301 million virtual molecules against a validated pain target, the α2A-adrenergic receptor (α2AAR), seeking new α2AAR agonists chemotypes that lack the sedation conferred by known α2AAR drugs, such as dexmedetomidine. We identified 17 ligands with potencies as low as 12 nanomolar, many with partial agonism and preferential Gi and Go signaling. Experimental structures of α2AAR complexed with two of these agonists confirmed the docking predictions and templated further optimization. Several compounds, including the initial docking hit '9087 [mean effective concentration (EC50) of 52 nanomolar] and two analogs, '7075 and PS75 (EC50 4.1 and 4.8 nanomolar), exerted on-target analgesic activity in multiple in vivo pain models without sedation. These newly discovered agonists are interesting as therapeutic leads that lack the liabilities of opioids and the sedation of dexmedetomidine.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Analgesics, Non-Narcotic , Drug Discovery , Pain Management , Pain , Adrenergic alpha-2 Receptor Agonists/chemistry , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Analgesics, Non-Narcotic/chemistry , Analgesics, Non-Narcotic/pharmacology , Analgesics, Non-Narcotic/therapeutic use , Animals , Dexmedetomidine/chemistry , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Drug Design , Drug Discovery/methods , Humans , Ligands , Mice , Molecular Docking Simulation/methods , Structure-Activity Relationship
4.
Chemistry ; 28(63): e202201515, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-35899620

ABSTRACT

Photoswitchable ligands as biological tools provide an opportunity to explore the kinetics and dynamics of the clinically relevant µ-opioid receptor. These ligands can potentially activate or deactivate the receptor when desired by using light. Spatial and temporal control of biological activity allows for application in a diverse range of biological investigations. Photoswitchable ligands have been developed in this work, modelled on the known agonist fentanyl, with the aim of expanding the current "toolbox" of fentanyl photoswitchable ligands. In doing so, ligands have been developed that change geometry (isomerize) upon exposure to light, with varying photophysical and biochemical properties. This variation in properties could be valuable in further studying the functional significance of the µ-opioid receptor.


Subject(s)
Fentanyl , Fentanyl/pharmacology , Fentanyl/chemistry , Ligands
5.
ACS Chem Biol ; 17(8): 2142-2152, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35838163

ABSTRACT

Fluorescently labeled ligands are versatile molecular tools to study G protein-coupled receptors (GPCRs) and can be used for a range of different applications, including bioluminescence resonance energy transfer (BRET) assays. Here, we report the structure-based development of fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a drug target in oncology and inflammation. Starting from previously reported intracellular CCR2 antagonists, several tetramethylrhodamine (TAMRA)-labeled CCR2 ligands were designed, synthesized, and tested for their suitability as fluorescent reporters to probe binding to the IABS of CCR2. By means of these studies, we developed 14 as a fluorescent CCR2 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a non-isotopic and high-throughput manner. Further, we show that 14 can be used as a tool for fragment-based screening approaches. Thus, our small-molecule-based fluorescent CCR2 ligand 14 represents a promising tool for future studies of CCR2 pharmacology.


Subject(s)
Receptors, CCR2 , Receptors, G-Protein-Coupled , Allosteric Site , Ligands , Protein Binding , Receptors, CCR2/chemistry , Receptors, CCR2/metabolism , Receptors, G-Protein-Coupled/metabolism
6.
Nat Commun ; 13(1): 2375, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501348

ABSTRACT

GPR88 is an orphan class A G-protein-coupled receptor that is highly expressed in the striatum and regulates diverse brain and behavioral functions. Here we present cryo-EM structures of the human GPR88-Gi1 signaling complex with or without a synthetic agonist (1R, 2R)-2-PCCA. We show that (1R, 2R)-2-PCCA is an allosteric modulator binding to a herein identified pocket formed by the cytoplasmic ends of transmembrane segments 5, 6, and the extreme C terminus of the α5 helix of Gi1. We also identify an electron density in the extracellular orthosteric site that may represent a putative endogenous ligand of GPR88. These structures, together with mutagenesis studies and an inactive state model obtained from metadynamics simulations, reveal a unique activation mechanism for GPR88 with a set of distinctive structure features and a water-mediated polar network. Overall, our results provide a structural framework for understanding the ligand binding, activation and signaling mechanism of GPR88, and will facilitate the innovative drug discovery for neuropsychiatric disorders and for deorphanization of this receptor.


Subject(s)
Brain , Receptors, G-Protein-Coupled , Allosteric Regulation , Brain/metabolism , Corpus Striatum/metabolism , Humans , Ligands , Receptors, G-Protein-Coupled/metabolism
7.
Bioorg Med Chem ; 61: 116720, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35334449

ABSTRACT

A broadly applicable synthesis of peptides incorporating mixed disulfides between cysteine and homocysteine and cysteamine was developed. The method was established using pharmacologically relevant G protein-coupled receptor (GPCR) ligands including the µ-receptor agonist Dmt-DALDA and extended to the orexin derivative Oxa(17-33) and NT(8-13), the C-terminal hexapeptide of neurotensin. The newly developed NT(8-13) analog 6b incorporating an S-functionalized homocysteine revealed covalent binding of the neurotensin receptor 1 (NTSR1) in a radioligand depletion study.


Subject(s)
Disulfides , Neurotensin , Homocysteine , Peptides/pharmacology , Receptors, Neurotensin/agonists
8.
Angew Chem Int Ed Engl ; 61(12): e202116782, 2022 03 14.
Article in English | MEDLINE | ID: mdl-34936714

ABSTRACT

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.


Subject(s)
Receptors, CCR , Receptors, G-Protein-Coupled , Allosteric Site , Ligands , Receptors, CCR/metabolism , Receptors, G-Protein-Coupled/metabolism
9.
J Med Chem ; 64(22): 16746-16769, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34748345

ABSTRACT

The family of neuropeptide Y (NPY) receptors comprises four subtypes (Y1R, Y2R, Y4R, Y5R), which are addressed by at least three endogenous peptides, i.e., NPY, peptide YY, and pancreatic polypeptide (PP), the latter showing a preference for Y4R. A series of cyclic oligopeptidic Y4R ligands were prepared by applying a novel approach, i.e., N-terminus to arginine side-chain cyclization. Most peptides acted as Y4R partial agonists, showing up to 60-fold higher Y4R affinity compared to the linear precursor peptides. Two cyclic hexapeptides (18, 24) showed higher Y4R potency (Ca2+ aequorin assay) and, with pKi values >10, also higher Y4R affinity compared to human pancreatic polypeptide (hPP). Compounds such as 18 and 24, exhibiting considerably lower molecular weight and considerably more pronounced Y4R selectivity than PP and previously described dimeric peptidic ligands with high Y4R affinity, represent promising leads for the preparation of labeled tool compounds and might support the development of drug-like Y4R ligands.


Subject(s)
Arginine/chemistry , Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/metabolism , Amino Acid Sequence , Cyclization , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Receptors, Neuropeptide Y/chemistry
10.
Eur J Med Chem ; 213: 113159, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33571911

ABSTRACT

The family of human muscarinic acetylcholine receptors (MRs) is characterized by a high sequence homology among the five subtypes (M1R-M5R), being the reason for a lack of subtype selective MR ligands. In continuation of our work on dualsteric dibenzodiazepinone-type M2R antagonists, a series of M2R ligands containing a dibenzodiazepinone pharmacophore linked to small basic peptides was synthesized (64 compounds). The linker moiety was varied with respect to length, number of basic nitrogens (0-2) and flexibility. Besides proteinogenic basic amino acids (Lys, Arg), shorter homologues of Lys and Arg, containing three and two methylene groups, respectively, as well as D-configured amino acids were incorporated. The type of linker had a marked impact on M2R affinity and also effected M2R selectivity. In contrast, the structure of the basic peptide rather determined M2R selectivity than M2R affinity. For example, the most M2R selective compound (UR-CG188, 89) with picomolar M2R affinity (pKi 9.60), exhibited a higher M2R selectivity (ratio of Ki M1R/M2R/M3R/M4R/M5R: 110:1:5200:55:2300) compared to the vast majority of reported M2R preferring MR ligands. For selected ligands, M2R antagonism was confirmed in a M2R miniG protein recruitment assay.


Subject(s)
Amino Acids/antagonists & inhibitors , Benzodiazepinones/pharmacology , Muscarinic Antagonists/pharmacology , Peptides/pharmacology , Receptor, Muscarinic M2/antagonists & inhibitors , Amino Acids/metabolism , Animals , Benzodiazepinones/chemical synthesis , Benzodiazepinones/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/chemistry , Peptides/chemistry , Receptor, Muscarinic M2/metabolism , Structure-Activity Relationship
11.
Sci Rep ; 10(1): 21842, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33318558

ABSTRACT

Fluorescent ligands are versatile tools for the study of G protein-coupled receptors. Depending on the fluorophore, they can be used for a range of different applications, including fluorescence microscopy and bioluminescence or fluorescence resonance energy transfer (BRET or FRET) assays. Starting from phenylpiperazines and indanylamines, privileged scaffolds for dopamine D2-like receptors, we developed dansyl-labeled fluorescent ligands that are well accommodated in the binding pockets of D2 and D3 receptors. These receptors are the target proteins for the therapy for several neurologic and psychiatric disorders, including Parkinson's disease and schizophrenia. The dansyl-labeled ligands exhibit binding affinities up to 0.44 nM and 0.29 nM at D2R and D3R, respectively. When the dansyl label was exchanged for sterically more demanding xanthene or cyanine dyes, fluorescent ligands 10a-c retained excellent binding properties and, as expected from their indanylamine pharmacophore, acted as agonists at D2R. While the Cy3B-labeled ligand 10b was used to visualize D2R and D3R on the surface of living cells by total internal reflection microscopy, ligand 10a comprising a rhodamine label showed excellent properties in a NanoBRET binding assay at D3R.


Subject(s)
Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Receptors, Dopamine D2 , Receptors, Dopamine D3 , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Receptors, Dopamine D2/chemistry , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/chemistry , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/metabolism
12.
ACS Med Chem Lett ; 11(6): 1316-1323, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551018

ABSTRACT

Proteinase-activated receptor 2 (PAR2) is a class A G protein-coupled receptor whose activation has been associated with inflammatory diseases and cancer, thus representing a valuable therapeutic target. Pathophysiological roles of PAR2 are often characterized using peptidic PAR2 agonists. Peptidic ligands are frequently unstable in vivo and show poor bioavailability, and only a few approaches toward drug-like nonpeptidic PAR2 ligands have been described. The herein-described ligand 5a (IK187) is a nonpeptidic PAR2 agonist with submicromolar potency in a functional assay reflecting G protein activation. The ligand also showed substantial ß-arrestin recruitment. The development of the compound was guided by the crystal structure of PAR2, when the C-terminal end of peptidic agonists was replaced by a small molecule based on a disubstituted phenylene scaffold. IK187 shows preferable metabolic stability and may serve as a lead compound for the development of nonpeptidic drugs addressing PAR2.

13.
J Med Chem ; 62(10): 5111-5131, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31042379

ABSTRACT

Starting from the ß-adrenoceptor agonist isoprenaline and beta-blocker carvedilol, we designed and synthesized three different chemotypes of agonist/antagonist hybrids. Investigations of ligand-mediated receptor activation using bioluminescence resonance energy transfer biosensors revealed a predominant effect of the aromatic head group on the intrinsic activity of our ligands, as ligands with a carvedilol head group were devoid of agonistic activity. Ligands composed of a catechol head group and an antagonist-like oxypropylene spacer possess significant intrinsic activity for the activation of Gαs, while they only show weak or even no ß-arrestin-2 recruitment at both ß1- and ß2-AR. Molecular dynamics simulations suggest that the difference in G protein efficacy and ß-arrestin recruitment of the hybrid ( S)-22, the full agonist epinephrine, and the ß2-selective, G protein-biased partial agonist salmeterol depends on specific hydrogen bonding between Ser5.46 and Asn6.55, and the aromatic head group of the ligands.


Subject(s)
Adrenergic beta-Agonists/chemistry , Adrenergic beta-Antagonists/chemistry , GTP-Binding Proteins/drug effects , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Carvedilol/chemical synthesis , Carvedilol/chemistry , Catechols/chemistry , Drug Design , Humans , Hydrogen Bonding , Indicators and Reagents , Isoproterenol/chemical synthesis , Isoproterenol/chemistry , Ligands , Mice , Models, Molecular , Molecular Dynamics Simulation , Salmeterol Xinafoate/pharmacology , beta-Arrestins/drug effects , beta-Arrestins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...