Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 433(9): 166893, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33639211

ABSTRACT

The affinity system based on the artificial peptide ligand Strep-tag® II and engineered tetrameric streptavidin, known as Strep-Tactin®, offers attractive applications for the study of recombinant proteins, from detection and purification to functional immobilization. To further improve binding of the Strep-tag II to streptavidin we have subjected two protruding loops that shape its ligand pocket for the peptide - instead of D-biotin recognized by the natural protein - to iterative random mutagenesis. Sequence analyses of hits from functional screening assays revealed several unexpected structural motifs, such as a disulfide bridge at the base of one loop, replacement of the crucial residue Trp120 by Gly and a two-residue deletion in the second loop. The mutant m1-9 (dubbed Strep-Tactin XT) showed strongly enhanced affinity towards the Strep-tag II, which was further boosted in case of the bivalent Twin-Strep-tag®. Four representative streptavidin mutants were crystallized in complex with the Strep-tag II peptide and their X-ray structures were solved at high resolutions. In addition, the crystal structure of the complex between Strep-Tactin XT and the Twin-Strep-tag was elucidated, indicating a bivalent mode of binding and explaining the experimentally observed avidity effect. Our study illustrates the structural plasticity of streptavidin as a scaffold for ligand binding and reveals interaction modes that would have been difficult to predict. As result, Strep-Tactin XT offers a convenient reagent for the kinetically stable immobilization of recombinant proteins fused with the Twin-Strep-tag. The possibility of reversibly dissociating such complexes simply with D-biotin as a competing ligand enables functional studies in protein science as well as cell biology.


Subject(s)
Peptides/metabolism , Protein Engineering , Recombinant Fusion Proteins/metabolism , Streptavidin/chemistry , Streptavidin/metabolism , Crystallography, X-Ray , Ligands , Models, Molecular , Mutagenesis , Mutation , Peptides/chemistry , Protein Binding/genetics , Protein Conformation , Recombinant Fusion Proteins/chemistry , Streptavidin/genetics
2.
Protein Expr Purif ; 131: 109-118, 2017 03.
Article in English | MEDLINE | ID: mdl-27867058

ABSTRACT

Human cannabinoid receptor CB2 belongs to the class A of G protein-coupled receptor (GPCR). CB2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification protocol reported here enables efficient isolation of a recombinant GPCR expressed at low titers in host cells. This procedure is suitable for preparation of milligram quantities of stable isotope-labelled receptor for high-resolution NMR studies.


Subject(s)
Chromatography, Affinity/methods , Gene Expression , Receptor, Cannabinoid, CB2 , Recombinant Fusion Proteins , Escherichia coli , Humans , Nuclear Magnetic Resonance, Biomolecular , Receptor, Cannabinoid, CB2/biosynthesis , Receptor, Cannabinoid, CB2/chemistry , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Surface Plasmon Resonance
3.
Protein Expr Purif ; 92(1): 54-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24012791

ABSTRACT

Short peptide affinity tags have become indispensable in protein research. They cannot only be used for affinity purification but also downstream for detection and assay of an arbitrary fused recombinant protein without the need for any prior knowledge of its biochemical properties. Strep-tag®II is particularly popular for providing recombinant proteins at high purity and functionality by using physiological conditions within a rapid one-step protocol. The affinity receptor for Strep-tag®II is affinity engineered streptavidin, named Strep-Tactin®. Strep-tag®II binds to the biotin binding pocket enabling mild competitive elution with biotin derivatives, preferably desthiobiotin, for repeated use of the Strep-Tactin® affinity resins. Fast binding and dissociation kinetics allow comparatively high flow rates throughout column chromatography including elution. Fast dissociation kinetics may be, however, limiting for using Strep-tag®II for direct purification of target proteins from large volumes of diluted extracts like mammalian cell culture supernatants or in assay formats requiring extended washing like ELISA. For this reason, binding characteristics were improved by development of the Twin-Strep-tag® consisting of two Strep-tag®II moieties connected by a short linker. The resulting avidity effect, i.e., the combined synergistic binding of two Strep-tag®II moieties to tetrameric Strep-Tactin®, reduces the off-rate for more steady binding under non-competitive conditions. The addition of a competitor, however, reverses the synergistic avidity effect and, hence, efficient elution capability is preserved. In fact, the Twin-Strep-tag® features all beneficial properties of Strep-tag®II, including efficient elution under gentle competitive conditions, but, due to its higher affinity, additionally enables a more universal use in applications requiring stable binding.


Subject(s)
Chromatography, Affinity/methods , Oligopeptides/metabolism , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Amino Acid Sequence , Animals , Biotin/metabolism , Cell Line , Humans , Molecular Sequence Data , Oligopeptides/chemistry , Oligopeptides/isolation & purification , Recombinant Fusion Proteins/chemistry , Streptavidin/metabolism
4.
Nat Protoc ; 2(6): 1528-35, 2007.
Article in English | MEDLINE | ID: mdl-17571060

ABSTRACT

The Strep-tag II is an eight-residue minimal peptide sequence (Trp-Ser-His-Pro-Gln-Phe-Glu-Lys) that exhibits intrinsic affinity toward streptavidin and can be fused to recombinant proteins in various fashions. We describe a protocol that enables quick and mild purification of corresponding Strep-tag II fusion proteins--including their complexes with interacting partners--both from bacterial and eukaryotic cell lysates using affinity chromatography on a matrix carrying an engineered streptavidin (Strep-Tactin), which can be accomplished within 1 h. A high-affinity monoclonal antibody (StrepMAB-Immo) permits stable immobilization of Strep-tag II fusion proteins to solid surfaces, for example, for surface plasmon resonance analysis. Selective and sensitive detection on western blots is achieved with Strep-Tactin/enzyme conjugates or another monoclonal antibody (StrepMAB-Classic). Thus, the Strep-tag II, which is short, biologically inert, proteolytically stable and does not interfere with membrane translocation or protein folding, offers a versatile tool both for the rapid isolation of a functional gene product and for its detection or molecular interaction analysis.


Subject(s)
Affinity Labels/chemistry , Immunoassay/methods , Oligopeptides/chemistry , Proteins/chemistry , Proteins/isolation & purification , Affinity Labels/analysis , Binding Sites , Escherichia coli , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Oligopeptides/analysis , Protein Binding , Proteins/analysis , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL