Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535316

ABSTRACT

Stress-induced fetal programming diminishes ß2 adrenergic tone, which coincides with intrauterine growth restriction (IUGR) and lifelong metabolic dysfunction. We determined if stimulating ß2 adrenergic activity in IUGR-born lambs would improve metabolic outcomes. IUGR lambs that received daily injections of saline or the ß2 agonist clenbuterol from birth to 60 days were compared with controls from pair-fed thermoneutral pregnancies. As juveniles, IUGR lambs exhibited systemic inflammation and robust metabolic dysfunction, including greater (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, increased (p < 0.05) intramuscular glycogen, reduced (p < 0.05) circulating IGF-1, hindlimb blood flow, glucose-stimulated insulin secretion, and muscle glucose oxidation. Daily clenbuterol fully recovered (p < 0.05) circulating TNFα, IL-6, and non-esterified fatty acids, hindlimb blood flow, muscle glucose oxidation, and intramuscular glycogen. Glucose-stimulated insulin secretion was partially recovered (p < 0.05) in clenbuterol-treated IUGR lambs, but circulating IGF-1 was not improved. Circulating triglycerides and HDL cholesterol were elevated (p < 0.05) in clenbuterol-treated IUGR lambs, despite being normal in untreated IUGR lambs. We conclude that deficient ß2 adrenergic regulation is a primary mechanism for several components of metabolic dysfunction in IUGR-born offspring and thus represents a potential therapeutic target for improving metabolic outcomes. Moreover, benefits from the ß2 agonist were likely complemented by its suppression of IUGR-associated inflammation.

2.
Front Physiol ; 14: 1252508, 2023.
Article in English | MEDLINE | ID: mdl-37745251

ABSTRACT

Background: Intrauterine growth restriction (IUGR) is associated with reduced ß2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating ß2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring. Methods: Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs. From birth, IUGR lambs received daily IM injections of 0.8 µg/kg clenbuterol HCl (IUGR+CLEN; n = 11) or saline placebo (IUGR; n = 12). Placebo-injected controls (n = 13) were born to pair-fed thermoneutral ewes. Biometrics were assessed weekly and body composition was estimated by ultrasound and bioelectrical impedance analysis (BIA). Lambs were necropsied at 60 days of age. Results: Bodyweights were lighter (p ≤ 0.05) for IUGR and IUGR+CLEN lambs than for controls at birth, day 30, and day 60. Average daily gain was less (p ≤ 0.05) for IUGR lambs than controls and was intermediate for IUGR+CLEN lambs. At day 58, BIA-estimated whole-body fat-free mass and ultrasound-estimated loin eye area were less (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. At necropsy, loin eye area and flexor digitorum superficialis muscles were smaller (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Longissimus dorsi protein content was less (p ≤ 0.05) and fat-to-protein ratio was greater (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Semitendinosus from IUGR lambs had less (p ≤ 0.05) ß2 adrenoreceptor content, fewer (p ≤ 0.05) proliferating myoblasts, tended to have fewer (p = 0.08) differentiated myoblasts, and had smaller (p ≤ 0.05) muscle fibers than controls. Proliferating myoblasts and fiber size were recovered (p ≤ 0.05) in IUGR+CLEN lambs compared to IUGR lambs, but ß2 adrenoreceptor content and differentiated myoblasts were not recovered. Semitendinosus lipid droplets were smaller (p ≤ 0.05) in size for IUGR lambs than for controls and were further reduced (p ≤ 0.05) in size for IUGR+CLEN lambs. Conclusion: These findings show that clenbuterol improved IUGR deficits in muscle growth and some metabolic parameters even without recovering the deficit in ß2 adrenoreceptor content. We conclude that IUGR muscle remained responsive to ß2 adrenergic stimulation postnatal, which may be a strategic target for improving muscle growth and body composition in IUGR-born offspring.

3.
Animals (Basel) ; 13(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36670787

ABSTRACT

The objectives were to determine the sensitivity, specificity, and cutoff values of a visual-based precision livestock technology (NUtrack), and determine the sensitivity and specificity of sickness score data collected with the live observation by trained human observers. At weaning, pigs (n = 192; gilts and barrows) were randomly assigned to one of twelve pens (16/pen) and treatments were randomly assigned to pens. Sham-pen pigs all received subcutaneous saline (3 mL). For LPS-pen pigs, all pigs received subcutaneous lipopolysaccharide (LPS; 300 µg/kg BW; E. coli O111:B4; in 3 mL of saline). For the last treatment, eight pigs were randomly assigned to receive LPS, and the other eight were sham (same methods as above; half-and-half pens). Human data from the day of the challenge presented high true positive and low false positive rates (88.5% sensitivity; 85.4% specificity; 0.871 Area Under Curve, AUC), however, these values declined when half-and-half pigs were scored (75% sensitivity; 65.5% specificity; 0.703 AUC). Precision technology measures had excellent AUC, sensitivity, and specificity for the first 72 h after treatment and AUC values were >0.970, regardless of pen treatment. These results indicate that precision technology has a greater potential for identifying pigs during a natural infectious disease event than trained professionals using timepoint sampling.

4.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35908785

ABSTRACT

Beta-adrenergic agonists (ß-AAs) are widely used supplements in beef and pork production to improve feed efficiency and increase lean muscle mass, yet little is known about the molecular mechanism by which ß-AAs achieve this outcome. Our objective was to identify the influence of ractopamine HCl and zilpaterol HCl on mitochondrial respiratory activity in muscle satellite cells isolated from crossbred beef steers (N = 5), crossbred barrows (N = 2), Yorkshire-cross gilts (N = 3), and commercial weather lambs (N = 5). Real-time measurements of oxygen consumption rates (OCRs) were recorded using extracellular flux analyses with a Seahorse XFe24 analyzer. After basal OCR measurements were recorded, zilpaterol HCl, ractopamine HCl, or no ß-AA was injected into the assay plate in three technical replicates for each cell isolate. Then, oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, and rotenone were injected into the assay plate sequentially, each inducing a different cellular state. This allowed for the measurement of OCR at these states and for the calculation of the following measures of mitochondrial function: basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, adenosine triphosphate (ATP)-linked respiration, and spare respiratory capacity. Incubation of bovine cells with either zilpaterol HCl or ractopamine HCl increased maximal respiration (P = 0.046) and spare respiratory capacity (P = 0.035) compared with non-supplemented counterparts. No difference (P > 0.05) was observed between zilpaterol HCl and ractopamine HCl for maximal respiration and spare respiratory capacity in bovine cell isolates. No measures of mitochondrial function (basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, ATP-linked respiration, and spare respiratory capacity) were altered by ß-AA treatment in ovine or porcine cells. These findings indicate that ß-AAs in cattle may improve the efficiency of oxidative metabolism in muscle satellite cells by modifying mitochondrial respiratory activity. The lack of response by ovine and porcine cells to ß-AA incubation also demonstrates differing physiological responses to ß-AA across species, which helps to explain the variation in its effectiveness as a growth supplement.


Beta-adrenergic agonists (ß-AAs) are supplemented to pigs and cattle to improve growth performance, carcass weight, and loin muscle area. Little is known about the mechanism taking place within individual cells by which ß-AAs achieve this outcome. Previous work reported that ß-AA supplementation improves the efficiency in which cells use glucose as an energy source and alters the expression of genes related to mitochondrial function, a key component of cellular energy production. To further our understanding of the impact of ß-AA supplementation on these cellular functions, our objective was to identify the influence of two ß-AAs used in livestock production, ractopamine HCl and zilpaterol HCl, on the mitochondrial respiratory activity of cells collected from the loin muscle and grown in culture. We isolated cells from cattle, pig, and sheep muscle and measured the oxygen consumption of the cells after treatment with ractopamine HCl, zilpaterol HCl, or with no supplement. We found that both ractopamine HCl and zilpaterol HCl enhance the efficiency of cellular energy production during a state of cellular stress in bovine muscle cells. There was no appreciable effect of the supplement on the energy production of pig or sheep cells. These data indicate that ß-AA supplementation in cattle may increase the muscle cell energy production capacity compared with non-supplemented cells. This study also demonstrates that the efficiency of cell energy production is one plausible mechanism underlying species differences in the response to ß-AA supplementation.


Subject(s)
Oxidative Phosphorylation , Protons , Adenosine Triphosphate , Adrenergic beta-Agonists/pharmacology , Animals , Cattle , Female , Myoblasts , Phenethylamines/pharmacology , Sheep , Sheep, Domestic , Swine
5.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35908792

ABSTRACT

Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) ß-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.


Myoblasts are stems cells whose functional capacity can limit muscle growth. However, stressful intrauterine conditions cause these cells to be intrinsically dysfunctional. This restricts muscle growth capacity, leading to intrauterine growth restriction (IUGR) of the fetus, low birth weight, and less muscle mass after birth. Consequently, meat yield is reduced in IUGR-born food animals and glucose homeostasis is impaired in IUGR-born humans, which contributes to metabolic dysfunction. Intrinsic dysfunction of IUGR myoblasts has been previously observed, but the fetal programming changes (i.e., permanent changes in the development of cellular mechanisms that explains different functional outcomes) have not been identified. This study shows that one mechanism is the enhancement of signaling pathways for TNF-α and other inflammatory cytokines. These cytokines have roles in stress responses and regulation of muscle growth. Programmed enhancement of these pathways means that IUGR myoblasts are more responsive to even normal amounts of circulating cytokines. Unfortunately, the primary response of myoblasts to cytokines is slower differentiation (i.e., cellular transformation necessary for muscle growth). Programmed enhancement of this response directly impedes myoblast-dependent muscle growth, and the deficit is lifelong. However, identifying this mechanism is a fundamental step for developing strategies to improve muscle growth in low birth weight offspring.


Subject(s)
Fetal Growth Retardation , Sheep Diseases , Animals , Cell Proliferation , Desmin/metabolism , Female , Fetal Growth Retardation/veterinary , Fetus/metabolism , Insulin/metabolism , Insulin/pharmacology , Interleukin-6/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myogenin/metabolism , Norepinephrine , Placenta/metabolism , Pregnancy , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sheep , Signal Transduction
6.
Transl Anim Sci ; 6(3): txac082, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35875422

ABSTRACT

Animal behavior is indicative of health status and changes in behavior can indicate health issues (i.e., illness, stress, or injury). Currently, human observation (HO) is the only method for detecting behavior changes that may indicate problems in group-housed pigs. While HO is effective, limitations exist. Limitations include HO being time consuming, HO obfuscates natural behaviors, and it is not possible to maintain continuous HO. To address these limitations, a computer vision platform (NUtrack) was developed to identify (ID) and continuously monitor specific behaviors of group-housed pigs on an individual basis. The objectives of this study were to evaluate the capabilities of the NUtrack system and evaluate changes in behavior patterns over time of group-housed nursery pigs. The NUtrack system was installed above four nursery pens to monitor the behavior of 28 newly weaned pigs during a 42-d nursery period. Pigs were stratified by sex, litter, and randomly assigned to one of two pens (14 pigs/pen) for the first 22 d. On day 23, pigs were split into four pens (7 pigs/pen). To evaluate the NUtrack system's capabilities, 800 video frames containing 11,200 individual observations were randomly selected across the nursery period. Each frame was visually evaluated to verify the NUtrack system's accuracy for ID and classification of behavior. The NUtrack system achieved an overall accuracy for ID of 95.6%. This accuracy for ID was 93.5% during the first 22 d and increased (P < 0.001) to 98.2% for the final 20 d. Of the ID errors, 72.2% were due to mislabeled ID and 27.8% were due to loss of ID. The NUtrack system classified lying, standing, walking, at the feeder (ATF), and at the waterer (ATW) behaviors accurately at a rate of 98.7%, 89.7%, 88.5%, 95.6%, and 79.9%, respectively. Behavior data indicated that the time budget for lying, standing, and walking in nursery pigs was 77.7% ± 1.6%, 8.5% ± 1.1%, and 2.9% ± 0.4%, respectively. In addition, behavior data indicated that nursery pigs spent 9.9% ± 1.7% and 1.0% ± 0.3% time ATF and ATW, respectively. Results suggest that the NUtrack system can detect, identify, maintain ID, and classify specific behavior of group-housed nursery pigs for the duration of the 42-d nursery period. Overall, results suggest that, with continued research, the NUtrack system may provide a viable real-time precision livestock tool with the ability to assist producers in monitoring behaviors and potential changes in the behavior of group-housed pigs.

7.
J Anim Sci ; 100(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35079800

ABSTRACT

Heat stress (HS) triggers oxidative stress, systemic inflammation, and disrupts growth efficiency of livestock. ß-adrenergic agonists supplemented to ruminant livestock improve growth performance, increase skeletal muscle mass, and decrease carcass fat. The objective of this study was to understand the independent and interacting effects of HS and zilpaterol hydrochloride (ZH) supplementation on the transcriptome of subcutaneous white adipose tissue and the longissimus dorsi muscle in steers. Twenty-four Red Angus-based steers were assigned to thermoneutral (TN; Temperature Humidity Index [THI] = 68) or HS (THI = 73-85) conditions and were not supplemented or supplemented with ZH (8.33 mg/kg/d) for 21 d in a 2 × 2 factorial. Steers in the TN condition were pair-fed to the average daily feed intake of HS steers. RNA was isolated from adipose tissue and skeletal muscle samples collected via biopsy on 3, 10, and 21 d and sequenced using 3' Tag-Seq to an achieved average depth of 3.6 million reads/sample. Transcripts, mapped to ARS-UCD1.2, were quantified. Differential expression (DE) analyses were performed in DESeq2 with a significance threshold for false discovery rate of 0.05. In adipose, 4 loci (MISP3, APOL6, SLC25A4, and S100A12) were DE due to ZH on day 3, and 2 (RRAD, ALB) were DE due to the interaction of HS and ZH on day 10 (Padj < 0.05). In muscle, 40 loci (including TENM4 and OAZ1) were DE due to ZH on day 10, and 6 loci (HIF1A, LOC101903734, PDZD9, HNRNPU, MTUS1, and TMCO6) were DE due to environment on day 21 (Padj < 0.05). To explore biological pathways altered by environment, supplement, and their interaction, loci with DE (Praw < 0.05) were evaluated in Ingenuity Pathway Analysis. In adipose, 509 pathways were predicted to be altered (P < 0.01): 202 due to HS, 126 due to ZH, and 181 due to the interaction; these included inflammatory pathways predicted to be upregulated due to HS but downregulated due to the interaction of HS and ZH. In muscle, 113 pathways were predicted to be altered (P < 0.01): 23 due to HS, 66 due to ZH, and 24 due to the interaction of HS and ZH. Loci and pathway data in muscle suggest HS induced oxidative stress and that the stress response was moderated by ZH. Metabolic pathways were predicted to be altered due to HS, ZH, and their interaction in both tissues. These data provide evidence that HS and ZH interact to alter expression of genes in metabolic and immune function pathways and that ZH moderates some adverse effects of HS.


Heat stress (HS) negatively impacts livestock health and carcass quality. Supplementation of livestock with ß-adrenergic agonists (ß-AA) increases muscle mass and decreases fat deposition. The purpose of this study was to understand how HS and zilpaterol hydrochloride (ZH), a ß-AA, alter gene expression in muscle and in adipose of cattle. Twenty-four steers were assigned to thermoneutral (TN) or HS conditions and were not supplemented (NS) or supplemented with ZH for 21 d. RNA was isolated from muscle and adipose collected on days 3, 10, and 21 to identify changes in gene expression. Several individual loci were differentially expressed (DE) due to HS or ZH in both tissues while the interaction of HS and ZH altered expression in adipose. A less stringent definition of DE used to explore biological pathways predicted that both treatments alter metabolism. Pathway analyses also supported that HS increased inflammation in adipose, but that these inflammatory pathways were downregulated by ZH. HS also was predicted to induce oxidative stress in muscle although ZH moderated this response. This study provides information on how HS and ß-AA act independently and interact to alter physiology, lending insight useful for the development of management and mitigation strategies for stress.


Subject(s)
Animal Feed , Cattle Diseases , Adipose Tissue, White , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Gene Expression Profiling/veterinary , Heat-Shock Response , Inflammation/veterinary , Meat/analysis , Muscle, Skeletal/physiology , Oxidative Stress , Trimethylsilyl Compounds/pharmacology
8.
J Anim Sci ; 99(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34370018

ABSTRACT

Understanding how ß adrenergic agonists influence the physiology of heat stress could lead to mitigation options. We sought to investigate body surface temperatures in feedlot wethers supplemented with ractopamine or zilpaterol and exposed to heat stress for 18 d. Corneal and skin temperatures were assessed via infrared thermography at 1- and 2-m distances. Rectal temperatures and circulating leukocytes, metabolites, and electrolytes were also measured. Heat stress increased (P < 0.05) rectal temperatures in unsupplemented and zilpaterol-supplemented lambs but not in ractopamine-supplemented lambs. Heat stress also increased (P < 0.05) surface temperatures of the cornea, nose, ear, and back, regardless of supplement. Observations were comparable between thermography performed at 1 and 2 m, and higher emissivity settings generally produced less variation. Heat stress tended to increase (P = 0.08) blood monocytes in unsupplemented but not ractopamine- or zilpaterol-supplemented lambs. Granulocytes were increased (P < 0.05) by heat stress in ractopamine-supplemented lambs but decreased (P < 0.05) in zilpaterol-supplemented lambs. Blood glucose, triglycerides, and cholesterol did not differ among groups, and blood lactate was reduced (P < 0.05) by heat stress in zilpaterol-supplemented lambs only. Blood Na+ was reduced (P < 0.05) and Ca2+ increased (P < 0.05) by heat stress, regardless of supplement. These findings indicate that ß1- and ß2-adrenergic agonists differentially relieve some but not all heat stress-induced changes in stress indicators. Moreover, corneal and skin surface temperatures measured by infrared thermography reasonably identified body temperature changes at a distance of 2 m.


Subject(s)
Body Temperature , Heat-Shock Response , Animals , Cornea , Leukocytes , Male , Phenethylamines , Sheep , Temperature , Trimethylsilyl Compounds
13.
J Anim Sci ; 98(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32428228

ABSTRACT

Heat stress hinders growth and well-being in livestock, an effect that is perhaps exacerbated by the ß1 agonist ractopamine. Heat stress deficits are mediated in part by reduced feed intake, but other mechanisms involved are less understood. Our objective was to determine the direct impact of heat stress on growth and well-being in ractopamine-supplemented feedlot lambs. Commercial wethers were fed under heat stress (40 °C) for 30 d, and controls (18 °C) were pair-fed. In a 2 × 2 factorial, lambs were also given a daily gavage of 0 or 60 mg ractopamine. Growth, metabolic, cardiovascular, and stress indicators were assessed throughout the study. At necropsy, 9th to 12th rib sections (four-rib), internal organs, and feet were assessed, and sartorius muscles were collected for ex vivo glucose metabolic studies. Heat stress increased (P < 0.05) rectal temperatures and respiration rates throughout the study and reduced (P < 0.05) weight gain and feed efficiency over the first week, ultrasonic loin-eye area and loin depth near the end of the study, and four-rib weight at necropsy. Fat content of the four-rib and loin were also reduced (P < 0.05) by heat stress. Ractopamine increased (P < 0.05) loin weight and fat content and partially moderated the impact of heat stress on rectal temperature and four-rib weight. Heat stress reduced (P < 0.05) spleen weight, increased (P < 0.05) adrenal and lung weights, and was associated with hoof wall overgrowth but not organ lesions. Ractopamine did not affect any measured indicators of well-being. Heat stress reduced (P < 0.05) blood urea nitrogen and increased (P < 0.05) circulating monocytes, granulocytes, and total white blood cells as well as epinephrine, TNFα, cholesterol, and triglycerides. Cortisol and insulin were not affected. Heat stress reduced (P < 0.05) blood pressure and heart rates in all lambs and increased (P < 0.05) left ventricular wall thickness in unsupplemented but not ractopamine-supplemented lambs. No cardiac arrhythmias were observed. Muscle glucose uptake did not differ among groups, but insulin-stimulated glucose oxidation was reduced (P < 0.05) in muscle from heat-stressed lambs. These findings demonstrate that heat stress impairs growth, metabolism, and well-being even when the impact of feed intake is eliminated by pair-feeding and that systemic inflammation and hypercatecholaminemia likely contribute to these deficits. Moreover, ractopamine improved muscle growth indicators without worsening the effects of heat stress.


Subject(s)
Heat Stress Disorders/veterinary , Phenethylamines/administration & dosage , Sheep Diseases/etiology , Adrenergic beta-Agonists/administration & dosage , Adrenergic beta-Agonists/adverse effects , Adrenergic beta-Agonists/pharmacology , Animal Feed/analysis , Animals , Body Composition/drug effects , Dietary Supplements , Glucose/metabolism , Heat-Shock Response , Inflammation/metabolism , Inflammation/veterinary , Insulin/metabolism , Male , Muscle, Skeletal/metabolism , Phenethylamines/adverse effects , Phenethylamines/pharmacology , Sheep , Triglycerides/metabolism , Weight Gain/drug effects
14.
J Appl Genet ; 61(1): 117-121, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707691

ABSTRACT

Ractopamine HCl (RHC) is supplemented to feedlot cattle to improve feed efficiency and increase carcass weight. Supplementation of RHC clearly benefits livestock production, but it is of note that the adrenergic system through which it acts is typically associated with stress. The purpose of this study was to identify changes in the transcriptome of whole blood in RHC-supplemented feedlot cattle. We hypothesized that transcripts related to inflammatory processes would be upregulated after 35 days of dietary RHC supplementation. To test this hypothesis, RNA from whole blood collected from 16 cattle before and after supplementation with 300 mg/day of RHC was sequenced using 3' tag-seq. Eight transcripts were differentially expressed (Adjp < 0.10) between pre- and post-supplementation blood samples. Although several of these transcripts including IFI35, TYROBP, and TP53INP1 are associated with inflammation, a systemic dysregulation of inflammatory pathways was not evident. These data provide insight into the response of cattle to RHC supplementation that will direct future studies examining how the transcriptome of whole blood and other tissues responds during acute exposure to RHC and how this supplement mechanistically improves growth performance.


Subject(s)
Adrenergic Agonists/pharmacology , Animal Feed , Dietary Supplements , Gene Expression Profiling , Gene Expression Regulation/drug effects , Transcriptome/drug effects , Animals , Biomarkers , Cattle , Female , Male
17.
J Anim Sci ; 97(10): 4101-4113, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31410479

ABSTRACT

Feedlot performance is reduced by heat stress and improved by ß adrenergic agonists (ßAA). However, the physiological mechanisms underlying these outcomes are not well characterized, and anecdotal reports suggest that ßAA may confound the effects of heat stress on wellbeing. Thus, we sought to determine how heat stress and ßAA affect growth, metabolic efficiency, and health indicators in lambs on a feedlot diet. Wethers (38.6 ± 1.9 kg) were housed under thermoneutral (controls; n = 25) or heat stress (n = 24) conditions for 21 d. In a 2 × 3 factorial, their diets contained no supplement (unsupplemented), ractopamine (ß1AA), or zilpaterol (ß2AA). Blood was collected on days -3, 3, 9, and 21. On day 22, lambs were harvested and ex vivo skeletal muscle glucose oxidation was determined to gauge metabolic efficiency. Feet and organ tissue damage was assessed by veterinary pathologists. Heat stress reduced (P < 0.05) feed intake by 21%, final bodyweight (BW) by 2.6 kg, and flexor digitorum superficialis (FDS) muscle mass by 5%. ß2AA increased (P < 0.05) FDS mass/BW by 9% and average muscle fiber area by 13% compared with unsupplemented lambs. Blood lymphocytes and monocytes were greater (P < 0.05) in heat-stressed lambs, consistent with systemic inflammation. Plasma insulin was 22% greater (P < 0.05) and glucose/insulin was 16% less (P < 0.05) in heat-stressed lambs than controls. Blood plasma urea nitrogen was increased (P < 0.05) by heat stress on day 3 but reduced (P < 0.05) on days 9 and 21. Plasma lipase and lactate dehydrogenase were reduced (P < 0.05) by heat stress. Glucose oxidation was 17% less (P < 0.05) in muscle from heat-stressed lambs compared with controls and 15% greater (P < 0.05) for ß2AA-supplemented compared with unsupplemented lambs. Environment and supplement interacted (P < 0.05) for rectal temperature, which was increased (P < 0.05) by heat stress on all days but more so (P < 0.05) in ß2AA-supplemented lambs on days 4, 9, and 16. Heat stress increased (P < 0.05) the frequency of hoof wall overgrowth, but ßAA did not produce any pathologies. We conclude that reduced performance in heat-stressed lambs was mediated by reduced feed intake, muscle growth, and metabolic efficiency. ß2AA increased muscle growth and improved metabolic efficiency by increasing muscle glucose oxidation, but no such effects were observed with ractopamine. Finally, ßAA supplementation was not detrimental to health indicators in this study, nor did it worsen the effects of heat stress.


Subject(s)
Adrenergic beta-Agonists/administration & dosage , Heat Stress Disorders/veterinary , Hypertrophy/veterinary , Muscular Diseases/veterinary , Phenethylamines/administration & dosage , Sheep Diseases/drug therapy , Trimethylsilyl Compounds/administration & dosage , Animal Feed/analysis , Animals , Blood Urea Nitrogen , Body Weight , Diet/veterinary , Dietary Supplements , Heat Stress Disorders/metabolism , Heat-Shock Response/drug effects , Hot Temperature , Humidity , Hypertrophy/drug therapy , Hypertrophy/physiopathology , Immunohistochemistry , Male , Muscular Diseases/drug therapy , Muscular Diseases/physiopathology , Myosin Heavy Chains/analysis , Random Allocation , Sheep , Sheep Diseases/physiopathology , Sheep, Domestic
19.
J Anim Sci ; 96(7): 2987-3002, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29701769

ABSTRACT

Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in ß adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.


Subject(s)
Fetal Growth Retardation/veterinary , Adaptation, Physiological , Animals , Female , Fetal Growth Retardation/mortality , Fetal Growth Retardation/physiopathology , Fetus/physiopathology , Glucose/metabolism , Hot Temperature , Humans , Insulin Resistance , Muscle, Skeletal/metabolism , Obesity , Pregnancy , Quality of Life , Sheep , Stress, Physiological
20.
Transl Anim Sci ; 2(1): 37-49, 2018 Feb.
Article in English | MEDLINE | ID: mdl-32704688

ABSTRACT

To continue the series that began in 1994, the National Beef Quality Audit (NBQA) - 2016 was conducted to quantify the quality status of the market cow and bull beef sector, as well as determine improvements made in the beef and dairy industry since 2007. The NBQA-2016 was conducted from March through December of 2016, and assessed hide-on carcasses (n = 5,278), chilled carcasses (n = 4,285), heads (n = 5,720), and offal items (n = 4,800) in 18 commercial processing facilities throughout the United States. Beef cattle were predominantly black-hided; 68.0% of beef cows and 67.2% of beef bulls possessed a black hide. Holstein was the predominant type of dairy animal observed. Just over half (56.0%) of the cattle surveyed had no mud contamination on the hide, and when mud was present, 34.1% of cattle only had small amounts. Harvest floor assessments found 44.6% of livers, 23.1% of lungs, 22.3% of hearts, 20.0% of viscera, 8.2% of heads, and 5.9% of tongues were condemned. Liver condemnations were most frequently due to abscess presence. In contrast, contamination was the primary reason for condemnation of all other offal items. Of the cow carcasses surveyed, 17.4% carried a fetus at the time of harvest. As expected, mean carcass weight and loin muscle area values observed for bulls were heavier and larger than cows. The marbling scores represented by cull animal carcasses were most frequently slight and traces amounts. Cow carcasses manifested a greater amount of marbling on average than bull carcasses. The predominant fat color score showed all carcasses surveyed had some level of yellow fat. Only 1.3% of carcasses exhibited signs of arthritic joints. Results of the NBQA-2016 indicate there are areas in which the beef and dairy industries have improved and areas that still need attention to prevent value loss in market cows and bulls.

SELECTION OF CITATIONS
SEARCH DETAIL
...