Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 15: 1394263, 2024.
Article in English | MEDLINE | ID: mdl-38904042

ABSTRACT

Introduction: Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods: Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results: CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion: Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.


Subject(s)
Adipocytes , Aging , Caloric Restriction , Cancellous Bone , Mice, Inbred C57BL , Animals , Male , Caloric Restriction/methods , Mice , Aging/physiology , Cancellous Bone/pathology , Adipocytes/metabolism , Bone Marrow/metabolism , Tibia/metabolism
2.
Materials (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36614440

ABSTRACT

In fractures of the mandible, osteosynthesis with titanium plates is considered the gold standard. Titanium is an established and reliable material, its main disadvantages being metal artefacts and the need for removal in case of osteosynthesis complications. Magnesium, as a resorbable material with an elastic modulus close to cortical bone, offers a resorbable alternative osteosynthesis material, yet mechanical studies in mandible fracture fixation are still missing. The hypothesis of this study was that magnesium miniplates show no significant difference in the mechanical integrity provided for fracture fixation in mandible fractures under load-sharing indications. In a non-inferiority test, a continuous load was applied to a sheep mandible fracture model with osteosynthesis using either titanium miniplates of 1.0 mm thickness (Ti1.0), magnesium plates of 1.75 mm (Mg1.75), or magnesium plates of 1.5 mm thickness (Mg1.5). No significant difference (p > 0.05) was found in the peak force at failure, stiffness, or force at vertical displacement of 1.0 mm between Mg1.75, Mg1.5, and Ti1.0. This study shows the non-inferiority of WE43 magnesium miniplates compared to the clinical gold standard titanium miniplates.

3.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383915

ABSTRACT

The interaction of hematopoietic cells and the bone microenvironment to maintain bone homeostasis is increasingly appreciated. We hypothesized that the transfer of allogeneic T lymphocytes has extensive effects on bone biology and investigated trabecular and cortical bone structures, the osteoblast reconstitution, and the bone vasculature in experimental hematopoietic stem cell transplantations (HSCT). Allogeneic or syngeneic hematopoietic stem cells (HSC) and allogeneic T lymphocytes were isolated and transferred in a murine model. After 20, 40, and 60 days, bone structures were visualized using microCT and histology. Immune cells were monitored using flow cytometry and bone vessels, bone cells and immune cells were fluorescently stained and visualized. Remodeling of the bone substance, the bone vasculature and bone cell subsets were found to occur as early as day +20 after allogeneic HSCT (including allogeneic T lymphocytes) but not after syngeneic HSCT. We discovered that allogeneic HSCT (including allogeneic T lymphocytes) results in a transient increase of trabecular bone number and bone vessel density. This was paralleled by a cortical thinning as well as disruptive osteoblast lining and loss of B lymphocytes. In summary, our data demonstrate that the adoptive transfer of allogeneic HSCs and allogeneic T lymphocytes can induce profound structural and spatial changes of bone tissue homeostasis as well as bone marrow cell composition, underlining the importance of the adaptive immune system for maintaining a balanced bone biology.


Subject(s)
Bone Marrow Cells/metabolism , Bone Remodeling , Animals , Biomarkers , Bone Marrow/metabolism , Bone Marrow/pathology , Diaphyses , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Immunophenotyping , Mice , Osteoblasts/immunology , Osteoblasts/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation Chimera , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...