Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Struct Biol ; 213(2): 107715, 2021 06.
Article in English | MEDLINE | ID: mdl-33705979

ABSTRACT

The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel ß-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.


Subject(s)
Protozoan Proteins/chemistry , Trypanosoma cruzi/chemistry , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Cell Adhesion Molecules/chemistry , Circular Dichroism , Conserved Sequence , EF Hand Motifs , Microfilament Proteins/chemistry , Models, Molecular , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Protein Conformation, alpha-Helical , Protein Structure, Secondary , Protozoan Proteins/metabolism
2.
Biomol NMR Assign ; 10(2): 325-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27356988

ABSTRACT

Trypanosoma cruzi, Trypanosma brucei and Leishmania spp. are kinetoplastid protozoa causative agents of Chagas disease, sleeping sickness and leishmaniasis, respectively, neglected tropical diseases estimated to infect millions of people worldwide. Their genome sequencing has revealed approximately 50 % of genes encoding hypothetical proteins of unknown function, opening possibilities for novel target identification and drug discovery. Q4DY78 is a putative essential protein from T. cruzi conserved in the related kinetoplastids and divergent from mammalian host proteins. Here we report the (1)H, (15)N, and (13)C chemical shift assignments and secondary structure analysis of the Q4DY78 protein as basis for NMR structure determination, functional analysis and drug screening.


Subject(s)
Conserved Sequence , Nuclear Magnetic Resonance, Biomolecular , Protozoan Proteins/chemistry , Trypanosoma cruzi , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL